%matplotlib inline
Reference: Generating Names with a Character-Level RNN
This is our second of three tutorials on "NLP From Scratch".
In the first tutorial </intermediate/char_rnn_classification_tutorial>
we used a RNN to classify names into their language of origin. This time
we'll turn around and generate names from languages.
> python sample.py Russian RUS
Rovakov
Uantov
Shavakov
> python sample.py German GER
Gerren
Ereng
Rosher
> python sample.py Spanish SPA
Salla
Parer
Allan
> python sample.py Chinese CHI
Chan
Hang
Iun
We are still hand-crafting a small RNN with a few linear layers. The big difference is instead of predicting a category after reading in all the letters of a name, we input a category and output one letter at a time. Recurrently predicting characters to form language (this could also be done with words or other higher order constructs) is often referred to as a "language model".
Note::
Download the data from
here <https://download.pytorch.org/tutorial/data.zip>
_
and extract it to the current directory.
See the last tutorial for more detail of this process. In short, there
are a bunch of plain text files data/names/[Language].txt
with a
name per line. We split lines into an array, convert Unicode to ASCII,
and end up with a dictionary {language: [names ...]}
.
from __future__ import unicode_literals, print_function, division
from io import open
import glob
import os
import unicodedata
import string
all_letters = string.ascii_letters + " .,;'-"
n_letters = len(all_letters) + 1 # Plus EOS marker
print(n_letters)
def findFiles(path):
return glob.glob(path)
# Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
and c in all_letters
)
# Read a file and split into lines
def readLines(filename):
with open(filename, encoding='utf-8') as some_file:
return [unicodeToAscii(line.strip()) for line in some_file]
# Build the category_lines dictionary, a list of lines per category
category_lines = {}
all_categories = []
for filename in findFiles('data/names/*.txt'):
category = os.path.splitext(os.path.basename(filename))[0]
all_categories.append(category)
lines = readLines(filename)
category_lines[category] = lines
n_categories = len(all_categories)
if n_categories == 0:
raise RuntimeError('Data not found. Make sure that you downloaded data '
'from https://download.pytorch.org/tutorial/data.zip and extract it to '
'the current directory.')
print('# categories:', n_categories, all_categories)
print(unicodeToAscii("O'Néàl"))
59 # categories: 18 ['Arabic', 'Chinese', 'Czech', 'Dutch', 'English', 'French', 'German', 'Greek', 'Irish', 'Italian', 'Japanese', 'Korean', 'Polish', 'Portuguese', 'Russian', 'Scottish', 'Spanish', 'Vietnamese'] O'Neal
The category tensor is a one-hot vector just like the letter input.
We will interpret the output as the probability of the next letter. When sampling, the most likely output letter is used as the next input letter.
I added a second linear layer o2o
(after combining hidden and output) to give it more muscle to work with. There's also a dropout layer, which randomly zeros parts of its input <https://arxiv.org/abs/1207.0580>
__ with a given probability
(here 0.1) and is usually used to fuzz inputs to prevent overfitting. Here we're using it towards the end of the network to purposely add some chaos and increase sampling variety.
import torch
import torch.nn as nn
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.i2h = nn.Linear(n_categories + input_size + hidden_size, hidden_size)
self.i2o = nn.Linear(n_categories + input_size + hidden_size, output_size)
self.o2o = nn.Linear(hidden_size + output_size, output_size)
self.dropout = nn.Dropout(0.1)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, category, input, hidden):
input_combined = torch.cat((category, input, hidden), 1)
hidden = self.i2h(input_combined)
output = self.i2o(input_combined)
output_combined = torch.cat((hidden, output), 1)
output = self.o2o(output_combined)
output = self.dropout(output)
output = self.softmax(output)
return output, hidden
def initHidden(self):
return torch.zeros(1, self.hidden_size)
import random
# Random item from a list
def randomChoice(l):
return l[random.randint(0, len(l) - 1)]
# Get a random category and random line from that category
def randomTrainingPair():
category = randomChoice(all_categories)
line = randomChoice(category_lines[category])
return category, line
For each timestep (that is, for each letter in a training word) the
inputs of the network will be
(category, current letter, hidden state)
and the outputs will be
(next letter, next hidden state)
. So for each training set, we'll
need the category, a set of input letters, and a set of output/target
letters.
Since we are predicting the next letter from the current letter for each
timestep, the letter pairs are groups of consecutive letters from the
line - e.g. for "ABCD<EOS>"
we would create ("A", "B"), ("B", "C"),
("C", "D"), ("D", "EOS").
The category tensor is a one-hot tensor
of size <1 x n_categories>
. When training we feed it to the network at every
timestep - this is a design choice, it could have been included as part of initial hidden state or some other strategy.
# One-hot vector for category
def categoryTensor(category):
li = all_categories.index(category)
tensor = torch.zeros(1, n_categories)
tensor[0][li] = 1
return tensor
# One-hot matrix of first to last letters (not including EOS) for input
def inputTensor(line):
tensor = torch.zeros(len(line), 1, n_letters)
for li in range(len(line)):
letter = line[li]
tensor[li][0][all_letters.find(letter)] = 1
return tensor
# LongTensor of second letter to end (EOS) for target
def targetTensor(line):
letter_indexes = [all_letters.find(line[li]) for li in range(1, len(line))]
letter_indexes.append(n_letters - 1) # EOS
return torch.LongTensor(letter_indexes)
For convenience during training we'll make a randomTrainingExample
function that fetches a random (category, line) pair and turns them into
the required (category, input, target) tensors.
# Make category, input, and target tensors from a random category, line pair
def randomTrainingExample():
category, line = randomTrainingPair()
category_tensor = categoryTensor(category)
input_line_tensor = inputTensor(line)
target_line_tensor = targetTensor(line)
return category_tensor, input_line_tensor, target_line_tensor
# checking an example
category_tensor_ex, input_line_tensor_ex, target_line_tensor_ex = randomTrainingExample()
print(category_tensor_ex)
print('*'*50)
print(input_line_tensor_ex)
print('*'*50)
print(target_line_tensor_ex)
tensor([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.]]) ************************************************** tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], [[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], [[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]]) ************************************************** tensor([20, 3, 13, 24, 58])
In contrast to classification, where only the last output is used, we are making a prediction at every step, so we are calculating loss at every step.
The magic of autograd allows you to simply sum these losses at each step and call backward at the end.
criterion = nn.NLLLoss()
learning_rate = 0.0005
def train(category_tensor, input_line_tensor, target_line_tensor):
target_line_tensor.unsqueeze_(-1)
hidden = rnn.initHidden()
rnn.zero_grad()
loss = 0
for i in range(input_line_tensor.size(0)):
output, hidden = rnn(category_tensor, input_line_tensor[i], hidden)
l = criterion(output, target_line_tensor[i])
loss += l
loss.backward()
for p in rnn.parameters():
p.data.add_(p.grad.data, alpha=-learning_rate)
return output, loss.item() / input_line_tensor.size(0)
To keep track of how long training takes I am adding a
timeSince(timestamp)
function which returns a human readable string:
import time
import math
def timeSince(since):
now = time.time()
s = now - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
Training is business as usual - call train a bunch of times and wait a
few minutes, printing the current time and loss every print_every
examples, and keeping store of an average loss per plot_every
examples
in all_losses
for plotting later.
rnn = RNN(n_letters, 128, n_letters)
n_iters = 100000
print_every = 5000
plot_every = 500
all_losses = []
total_loss = 0 # Reset every plot_every iters
start = time.time()
for iter in range(1, n_iters + 1):
output, loss = train(*randomTrainingExample())
total_loss += loss
if iter % print_every == 0:
print('%s (%d %d%%) %.4f' % (timeSince(start), iter, iter / n_iters * 100, loss))
if iter % plot_every == 0:
all_losses.append(total_loss / plot_every)
total_loss = 0
0m 9s (5000 5%) 2.8355 0m 19s (10000 10%) 3.1312 0m 30s (15000 15%) 2.9347 0m 40s (20000 20%) 2.6689 0m 50s (25000 25%) 2.3120 1m 0s (30000 30%) 3.0715 1m 10s (35000 35%) 3.0679 1m 19s (40000 40%) 2.9894 1m 29s (45000 45%) 2.8843 1m 39s (50000 50%) 3.0642 1m 50s (55000 55%) 2.6255 2m 1s (60000 60%) 2.1282 2m 11s (65000 65%) 3.8605 2m 22s (70000 70%) 2.1296 2m 32s (75000 75%) 2.5431 2m 42s (80000 80%) 1.7461 2m 52s (85000 85%) 2.3877 3m 2s (90000 90%) 2.0096 3m 11s (95000 95%) 2.7768 3m 21s (100000 100%) 1.6882
Plotting the historical loss from all_losses shows the network learning:
import matplotlib.pyplot as plt
plt.figure()
plt.plot(all_losses)
[<matplotlib.lines.Line2D at 0x22b48ab0b80>]
To sample we give the network a letter and ask what the next one is, feed that in as the next letter, and repeat until the EOS token.
output_name
with the starting letterUp to a maximum output length,
output_name
and continueReturn the final name
.. Note:: Rather than having to give it a starting letter, another strategy would have been to include a "start of string" token in training and have the network choose its own starting letter.
max_length = 20
# Sample from a category and starting letter
def sample(category, start_letter='A'):
with torch.no_grad(): # no need to track history in sampling
category_tensor = categoryTensor(category)
input = inputTensor(start_letter)
hidden = rnn.initHidden()
output_name = start_letter
for i in range(max_length):
output, hidden = rnn(category_tensor, input[0], hidden)
topv, topi = output.topk(1)
topi = topi[0][0]
if topi == n_letters - 1:
break
else:
letter = all_letters[topi]
output_name += letter
input = inputTensor(letter)
return output_name
# Get multiple samples from one category and multiple starting letters
def samples(category, start_letters='ABC'):
for start_letter in start_letters:
print(sample(category, start_letter))
samples('Russian', 'AP')
print('*'*50)
samples('German', 'BATR')
print('*'*50)
samples('Spanish', 'PAN')
print('*'*50)
samples('Chinese', 'CZG')
print('*'*50)
Allan Pakin ************************************************** Belle Arten Terten Romer ************************************************** Paner Alla Nara ************************************************** Cha Zan Guan **************************************************