{ "cells": [ { "cell_type": "code", "execution_count": 4, "id": "initial_id", "metadata": { "ExecuteTime": { "end_time": "2024-09-23T05:04:32.286806Z", "start_time": "2024-09-23T05:04:32.163029Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7\n", " 8 9]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XlclWX+//HXh30RRRAQAUUR9xURTSs1W6wstabGlhlbpr2pZqZpnWrmN1NTfae+zUzptGurU2nqtGqmaa6Ju4IC4gIiiwgi+3L9/uDUlxwI5HDOfTjn83w8eBw45z6ctzf69uY+131dYoxBKaWU+/KyOoBSSinH0qJXSik3p0WvlFJuToteKaXcnBa9Ukq5OS16pZRyc1r0Sinl5rTolVLKzWnRK6WUm/OxOgBAjx49THx8vNUxlFKqU0lNTS0yxkS0tp1LFH18fDxbtmyxOoZSSnUqInKoLdvpqRullHJzWvRKKeXmtOiVUsrNadErpZSb06JXSik312rRi8gbIlIgIrub3BcmIitEJMN2273JYw+LSKaI7BORixwVXCmlVNu05Yh+PjDttPseAlYaYxKBlbavEZEhwGxgqO05c0XEu8PSKqWUOmOtFr0xZg1QfNrdM4AFts8XADOb3L/QGFNtjMkGMoGUDsr6X46VVvHnT/ZSXF7jqJdQSqlOr73n6KOMMXkAtttI2/0xwJEm2+XY7vsvInKriGwRkS2FhYXtClFaWcvr32az8LvD7Xq+Ukp5go5+M1aaua/Z1ceNMa8YY5KNMckREa1ewdusgT1DmJAQzjsbDlFX39Cu76GUUu6uvUWfLyLRALbbAtv9OUBck+1igaPtj9e6ORPiOVpaxVdp+Y58GaWU6rTaW/TLgDm2z+cAS5vcP1tE/EWkL5AIbLYv4k87f3AUMaGBzF9/0JEvo5RSnVZbhle+D2wABopIjojcDDwNXCAiGcAFtq8xxuwBPgD2Al8Adxlj6h0VHsDbS/jFWX3YeKCY9GMnHflSSinVKYkxzZ5Cd6rk5GRjz+yVJ8prGP/XlVyRFMNfrxjRgcmUUsp1iUiqMSa5te3c4srY7sF+zBodw8fbcimp0KGWSinVlFsUPTS+KVtV28AHW460vrFSSnkQtyn6wdFdSekbxlsbDlHfYP3pKKWUchVuU/QAN0yIJ+dEJV+nF7S+sVJKeQi3KvoLh0QR3S2ABTrUUimlfuBWRe/j7cX14/vwbWYRGfllVsdRSimX4FZFDzB7bBx+Pl4s2HDQ6ihKKeUS3K7ow7v4c/nIXizemsvJqlqr4yillOXcruih8U3Zipp6PtySY3UUpZSynFsW/bCYbozp0523NhykQYdaKqU8nFsWPTReQHXoeAWr9+tQS6WUZ3Pbor94WE+iuvozf/0hq6MopZSl3Lbofb29uG5cH9bsLySr8JTVcZRSyjJuW/QA16T0xs/bi7c36FG9UspzuXXRR4T4c+mIaD5KzaFMh1oqpTyUWxc9NL4pe6q6jkWpOtRSKeWZ3L7oR8WFMioulLc2HNKhlkopj+T2RQ+NF1AdKCpnbWaR1VGUUsrpPKLoLxkeTY8u/jqrpVLKI3lE0fv5eHHtuN6s2lfAwaJyq+MopZRTeUTRA1w3rjfeIrylQy2VUh7GY4o+qmsAlwyP5sMtRyivrrM6jlJKOY3HFD00DrUsq65j8bZcq6MopZTTeFTRJ/UOZXhMN95afxBjdKilUsozeFTRiwhzJsSTUXCK9VnHrY6jlFJO4VFFDzB9RDRhwX68ue6g1VGUUsopPK7oA3y9uTalNyvT8zlSXGF1HKWUcjiPK3qA68b3xkuEtzfqUEullPvzyKKP7hbItKE9+fd3R6isqbc6jlJKOZRHFj00DrUsraxlyXYdaqmUcm92Fb2I/EZE9ojIbhF5X0QCRCRMRFaISIbttntHhe1IY+O7Mzi6K/PX6VBLpZQ1nLVORruLXkRigHuAZGPMMMAbmA08BKw0xiQCK21fuxwR4cYJ8ezLL2ODDrVUSjmZMYbrX9/Mbz/Y7vDXsvfUjQ8QKCI+QBBwFJgBLLA9vgCYaedrOMzlo3rRo4s/877JsjqKUsrDrM86zo4jJYzp4/iTHu0uemNMLvA34DCQB5QaY5YDUcaYPNs2eUBkRwR1hABfb351Tl/WZhSx40iJ1XGUUh7kpVWZRIb4c2VSrMNfy55TN91pPHrvC/QCgkXk+jN4/q0iskVEthQWFrY3ht2uG9ebrgE+zF2daVkGpZRn2Xr4BOuzjnPLOf0I8PV2+OvZc+rmfCDbGFNojKkFFgMTgHwRiQaw3RY092RjzCvGmGRjTHJERIQdMewTEuDLDRPi+XJPPhn5ZZblUEp5jrmrsugW6Mu143o75fXsKfrDwHgRCRIRAaYCacAyYI5tmznAUvsiOt4NE/sS6OvNvNV6rl4p5Vjpx07yVVo+N06MJ9jfxymvac85+k3AR8BWYJfte70CPA1cICIZwAW2r11aWLAf147rzdIdR3VaBKWUQ81bnUWQnzc3TIh32mvaNerGGPOEMWaQMWaYMeYXxphqY8xxY8xUY0yi7ba4o8I60i3n9MNL4OU1elSvlHKMQ8fL+c+Oo1w/vg+hQX5Oe12PvTL2dD27BfCzMbF8sCWHgpNVVsdRSrmhf31zAB8vL351dl+nvq4WfRO3nZtAXX0Dr3+bbXUUpZSbOVZaxaLUHK5KjiWya4BTX1uLvon4HsFcNrIX72w8RElFjdVxlFJu5LW1B6g3htsnJTj9tbXoT3PH5ATKa+pZsF6nMFZKdYwT5TW8u+kwM0b2Ii4syOmvr0V/mkE9u3L+4CjeXJ9NeXWd1XGUUm7gzfUHqayt547Jzj+aBy36Zt05JYGSilre33zY6ihKqU7uVHUd89dlc9HQKBKjQizJoEXfjKTe3ZmQEM4raw5QXacLkyil2u/djYc4WVXHnZP7W5ZBi74Fd03pT0FZNYtSdWESpVT7VNXW8+rabM5J7MHIuFDLcmjRt2BCQjgj40L51zdZ1NU3WB1HKdUJfZiaQ9GpakuP5kGLvkUiwl2TEzhcXMGnu/KsjqOU6mRq6xt4+ZssknqHMr5fmKVZtOh/wvmDoxgQ1YW5q7JoaNDlBpVSbfefHUfJOVHJXVP60zjvo3W06H+Cl5dw5+T+7MsvY2V6s7MtK6XUf2loMMxdncWgniGcN8j6tZe06FsxfUQ0cWGBvLgqUxcRV0q1yfK9+WQWnOJOFziaBy36Vvl4e3H7pAR2HCnRRcSVUq0yxjB3dSbx4UFcOjza6jiAFn2bXJkUS2SIPy/pcoNKqVZ8m1nEzpxSbp+UgLeX9UfzoEXfJgG+3txyTj/WZR5n2+ETVsdRSrmwl1Zl0rNrALOSYqyO8gMt+ja6dlxvugX6MleXG1RKtSD1UDEbDxRzy7n98Pdx/KLfbaVF30bB/j7cODGeFXvz2XdMFxFXSv23uauy6B7kyzUpcVZH+REt+jNww4R4gvy8mafn6pVSp9l79CQr0wu4aWJfgvycs+h3W2nRn4HQID+uH9+HZTuOcvi4LiKulPo/877Joou/D788K97qKP9Fi/4M/ersvvh4efEvXURcKWWTXVTOpzsbF/3uFuRrdZz/okV/hiK7BnBVciwfbckhXxcRV0oBL3+Tha+3Fzc7edHvttKib4fbzk2g3hheW3vA6ihKKYvllVayaGsOPx8bR0SIv9VxmqVF3w69w4O4fGQv3t10mBPluoi4Up7s1TXZGAO3ntvP6igt0qJvpzsmJ1BRU8/89QetjqKUssjxU9W8v/kwM0bFENvd+Yt+t5UWfTsNiArhwiFRzF9/kFO6iLhSHmn++oNU1dVzx2TXPZoHLXq73DWlP6WVtbz5bbbVUZRSTlZcXsP8dQeZNrQn/SOtWfS7rbTo7TAyLpSLhkbx8poDHD9VbXUcpZQTvfh1JuU1dfzuwgFWR2mVFr2dfn/RICpq6nhxlV4tq5SnOFJcwdsbD3J1cpzLH82DFr3d+kd24edj43hn4yG9WlYpD/Hc8n14ewn3ne/6R/OgRd8h7jt/AN5ewnMr9lkdRSnlYLtzS1my/Sg3TexLz24BVsdpE7uKXkRCReQjEUkXkTQROUtEwkRkhYhk2G67d1RYVxXVNYCbz+7L0u1H2Z1banUcpZQDPfvlPkKDfLltUoLVUdrM3iP6vwNfGGMGASOBNOAhYKUxJhFYafva7d02KYHQIF+e+SLd6ihKKQdZl1nEmv2F3D2lP90CXW9Om5a0u+hFpCtwLvA6gDGmxhhTAswAFtg2WwDMtDdkZ9A1wJe7p/RnbUYRazMKrY6jlOpgDQ2Gpz9PJyY0kOvH97E6zhmx54i+H1AIvCki20TkNREJBqKMMXkAttvI5p4sIreKyBYR2VJY6B7F+Iuz+hATGsgzX6TT0GCsjqOU6kCf7spjV24pv7twAAG+rrN6VFvYU/Q+QBIwzxgzGijnDE7TGGNeMcYkG2OSIyIi7IjhOvx9vLn/ogHszj3JJ7vyrI6jlOogNXUN/G35Pgb1DGHGKNdZC7at7Cn6HCDHGLPJ9vVHNBZ/vohEA9huC+yL2LnMGBnD4Oiu/O3LfdTUNVgdRynVAd7ffJhDxyt48OJBeHuJ1XHOWLuL3hhzDDgiIgNtd00F9gLLgDm2++YAS+1K2Ml4eQkPXTyIw8UVvLfpkNVxlFJ2OlVdxz9WZnBWv3AmD+icZx/sXdjw18C7IuIHHABupPE/jw9E5GbgMHCVna/R6Zyb2IMJCeH84+tMrhwTS0hA53l3Xin1Y6+uOcDx8hoeungQIp3vaB7sHF5pjNluO88+whgz0xhzwhhz3Bgz1RiTaLst7qiwnYVI41F9cXkNr67RxUmU6qwKyqp4de0BLh0ezci4UKvjtJteGesgI2JDmT4imlfXZlNQpksOKtUZ/XNlJjV1Ddx/0cDWN3ZhWvQOdP+FA6mtb+AfKzOsjqKUOkPZReW8v/kw16T0pm+PYKvj2EWL3oHiewRz7bjevL/5CAcKT1kdRyl1Bv725T78fLy4Z2qi1VHspkXvYPdMTSTAx4u/LdcJz5TqLLYfKeHTXXncck4/l13w+0xo0TtYjy7+3HJuPz7bdYxth09YHUcp1QpjDE9/nkZ4sB+3uPCC32dCi94JfnVOP3p08ePpz9MxRqdGUMqVrd5fyMYDxdwzNZEu/vaOQHcNWvRO0MXfh3umJrIpu5jV+9xjXh+l3FF9g+GZz9PpEx7ENSm9rY7TYbToneSalN7EhwfxzBfp1OuEZ0q5pKXbc0k/Vsb9Fw7Ez8d96tF9/iQuztfbi/svGkj6sTI+3pZrdRyl1Gmqaut5bvl+hsd049Lh0VbH6VBa9E50ybBoRsR24/nl+6iqrbc6jlKqiXc2HiK3pJKHLh6EVyecuOynaNE70fcTnh0treLtDTrhmVKuorSylhdXZXLugAgm9u9hdZwOp0XvZBMSejBpQAQvrsqktKLW6jhKKeBf32RRUlHLg9M691QHLdGit8CD0wZxsqqWed9kWR1FKY93rLSKN77NZuaoXgzt1c3qOA6hRW+BIb26MmtUDG+uyyavtNLqOEp5tBe+2o8x8LsL3fNoHrToLfObCwZgDLywQic8U8oqmQVlfLDlCNeP70NcWJDVcRxGi94icWFB/OKsPnyYeoR9x8qsjqOUR3r6830E+/lw93n9rY7iUFr0Frp7Sn+6Bvry2JLdNOhFVEo51cq0fL5Ky+eOKQmEBftZHcehtOgt1D3Yj4cvHsTmg8V8lJpjdRylPEZFTR2PL91DYmQXfnW2e0xc9lO06C121Zg4UuLDeOrzNI6fqrY6jlIe4YWvMsgtqeSpK4a71VQHLXH/P6GL8/ISnpw1jPLqOp78LM3qOEq5vb1HT/L6t9lckxLH2Pgwq+M4hRa9C0iMCuG2cxNYvDWX9ZlFVsdRym3VNxge+XgXoYG+PDhtkNVxnEaL3kXcfV5/+oQH8eiS3ToPjlIO8t6mQ2w/UsJj04cQGuTeb8A2pUXvIgJ8vfnLzGFkF5Uzb7VeMatURys4WcWzX+zj7P49mDGql9VxnEqL3oWckxjBjFG9mLc6iyxdTFypDvWnT/ZSXd/An2cOQ8S9ZqdsjRa9i/nDpUMI8PXi0Y936bKDSnWQVfsK+HRnHr+e0p++PYKtjuN0WvQuJiLEn4cuHszGA8Us2qoLlChlr8qaeh5bspuEiGBuneT+Y+abo0XvgmaPjWNMn+48+eleistrrI6jVKf295UZ5Jyo5KlZw/H38bY6jiW06F2Ql5fw1KzhlFXV8VcdW69Uu6UfO8lraw9w1ZhYxvULtzqOZbToXdTAniHccm4/PkzNYeOB41bHUarTaWgwPLJ4F10DfXnkksFWx7GUFr0Lu+e8ROLCAnn0411U1+nYeqXOxMLvjrD1cAmPXDKY7m4+aVlr7C56EfEWkW0i8ont6zARWSEiGbbb7vbH9EyBft78vxnDyCos5+VvDlgdR6lOo6Csiqc/T2N8vzCuTIqxOo7lOuKI/l6g6Ynkh4CVxphEYKXta9VOUwZGMn1ENC+uyiS7qNzqOEp1Cn/5JI2q2gaenDXc48bMN8euoheRWOBS4LUmd88AFtg+XwDMtOc1FDw+fQj+3l78YYmOrVeqNWv2F7Jsx1HumJxAQkQXq+O4BHuP6F8AHgAamtwXZYzJA7DdRtr5Gh4vsmsAD1w8iHWZx1myXcfWK9WSqtp6/rBkN/16BHPH5ASr47iMdhe9iEwHCowxqe18/q0iskVEthQWFrY3hse4LqU3o+JC+csnaZRU6Nh6pZrz4teZHC6u4C+zhhHg65lj5ptjzxH9ROByETkILATOE5F3gHwRiQaw3RY092RjzCvGmGRjTHJERIQdMTzD92PrSyprefrzdKvjKOVy9ueX8fKaLK5IimFCQg+r47iUdhe9MeZhY0ysMSYemA18bYy5HlgGzLFtNgdYandKBcCQXl351dl9WfjdETZnF1sdRymX0dBgePTjXQT7+/Coh4+Zb44jxtE/DVwgIhnABbavVQe59/xEYkIbx9bX1DW0/gSlPMCHqUf47uAJHrl4MOFd/K2O43I6pOiNMauNMdNtnx83xkw1xiTabvXQswMF+fnw/2YMJaPgFK+u1bH1ShWdquapz9JJ6RvGVcmxVsdxSXplbCc0dXAUFw/ryT9WZnDouI6tV57tqU/TqKip46lZnjfPfFtp0XdST1w2FF9vL/6wZLeOrVcea11mEYu35XL7pAT6R4ZYHcdladF3Uj27BXD/hQNYm1Gk89Yrj3Squo5HPt5Fn/Ag7prS3+o4Lk2LvhP7xVnxpPQN4/Glu3XpQeVRjDE8tmQ3R4orePbKETpmvhVa9J2Yt5fwj9mj8ffx4u73tlFVqzNcKs/wUWoOH2/L5d6pAzx6nvm20qLv5Hp2C+C5q0eSlndSFylRHiGz4BSPL93D+H5h3H2enrJpCy16N3DeoChuPrsvCzYc4ovdx6yOo5TDVNXWc/d7Wwn08+bvs0fj7aWjbNpCi95NPDhtEMNjuvHARzvIOVFhdRylHOLJT9NIP1bGc1eNJKprgNVxOg0tejfh5+PFi9eOpsHAvQu3U1uvV80q9/L5rjze3niIW87py5RBOinumdCidyN9woN56orhpB46wf+u2G91HKU6zJHiCh5YtJORcaH8/qJBVsfpdLTo3czlI3sxe2wc877JYm2GTv+sOr/a+gbuWbgNDPxz9mj8fLS2zpTuMTf0xGVD6R/Rhd/8eweFZdVWx1HKLs+v2M+2wyX89crh9A4PsjpOp6RF74YC/bx58dokyqpq+e0H22lo0CkSVOe0Zn8h81ZncU1Kb6aP6GV1nE5Li95NDewZwhOXDWVtRhH/WpNldRylzlhBWRW//WA7A6K68Pj0IVbH6dS06N3YNSlxXDoimueW7yf1kM4WrTqPhgbDb/69nVPVdbx0bRKBfjrFgT206N2YiPDXK4bTKzSAe97fTmlFrdWRlGqTed9ksS7zOH+6fCiJUTorpb206N1c1wBf/nlNEvknq3hg0Q6d0li5vC0Hi3l+xX4uG9mLq5PjrI7jFrToPcCouFAenDaIL/fk887GQ1bHUapFJRU13PP+NmJCA3UhkQ6kRe8hbj67L5MHRvDnT9PYc7TU6jhK/RdjDA98tJPCU9W8eO1oQgJ8rY7kNrToPYSXl/DcVSPpHuTLr9/bRnl1ndWRlPqRtzYcYvnefB6cNogRsaFWx3ErWvQeJLyLPy/8fDTZx8t5fOkeq+Mo9YM9R0t58tM0pg6K5Oaz+1odx+1o0XuYsxLC+fV5iSzamsPirTlWx1GK8uo6fv3eNsKC/fifq0bqeXkH0KL3QPec15+UvmH8YcluDugShMpijy3ZzcHj5bwwexRhwX5Wx3FLWvQeyMfbi7/PHqVLECrLLUrNYfG2XO6Zmsh4XRLQYbToPVR0t0D+dtVI9uad5IGPdup8OMrpUg+d4NEluxjXN4xfn5dodRy3pkXvwaYOjuKBaQNZtuMoT+l6s8qJMgvKuHnBd/TsGsBL1yXpkoAO5mN1AGWtOyYlUHCymte+zSayqz+3nptgdSTl5o6VVvHL1zfj4+XFWzeNo0cXf6sjuT0teg8nIjw+fQiFp6p56rN0IkL8mTU61upYyk2VVtYy543NnKyqY+Gt43V+eSfRold4eQnPXz2S4lM1/P7DnYQF+zNpQITVsZSbqaqt55a3tnCg6BQLbkxhWEw3qyN5DD1HrwDw9/Hm5V+OITEqhDveSWVnTonVkZQbqW8w3LdwO5uzi3n+6lFM6N/D6kgeRYte/aBrgC8LbhxLWLAfN775HdlF5VZHUm7AGMMTy3bzxZ5jPD59CJeN1JWinK3dRS8icSKySkTSRGSPiNxruz9MRFaISIbttnvHxVWOFtk1gLduSsEAv3xjEwVlVVZHUp3cP7/O5J2Nh7l9UgI36fQGlrDniL4O+J0xZjAwHrhLRIYADwErjTGJwErb16oT6RfRhdfnJFNUVsONb35HWZUuWKLaZ+Hmwzy/Yj9XJMXw4LSBVsfxWO0uemNMnjFmq+3zMiANiAFmAAtsmy0AZtobUjnf6N7dmXt9EunHyrj9nVRq6hqsjqQ6mRV783nk411MGhDBM1eO0DlsLNQh5+hFJB4YDWwCoowxedD4nwEQ2cJzbhWRLSKypbCwsCNiqA42ZWAkz1w5gnWZx7n/wx169axqs9RDxdz93laGx3Rj7nVJ+Hrr24FWsnvvi0gXYBFwnzHmZFufZ4x5xRiTbIxJjojQoXyu6mdjYnlw2iCW7TjKXz5N06UIVasy8su4af4WeoUG8sYNYwn211HcVrPrJyAivjSW/LvGmMW2u/NFJNoYkyci0UCBvSGVtW6f1I/8k1W8sS6bqK7+3DZJr55VzcsrrWTOG5vx8/HirZtSCNerXl2CPaNuBHgdSDPGPN/koWXAHNvnc4Cl7Y+nXMH3V89eOiKav36ervPYq2aVVvzfVa/zbxxLXJhe9eoq7Dminwj8AtglIttt9z0CPA18ICI3A4eBq+yLqFzB91fPniiv4YGPdhIW7Mfkgc2+/aI80PdXvR4sqmD+jWMZ2kuvenUl4grnXJOTk82WLVusjqHaoKyqlp+/vJGDx8t5/5bxjIzTtT09XX2D4c53U1m+N59/XjOa6SP0gihnEZFUY0xya9vpW+HqjIQE+DL/prGEd/Hjxvl69aynM8bw2NLdfLknnyemD9GSd1Fa9OqMRYYEsODGFKDx6tn8k3r1rCcyxvDCVxm8t+kwd0xO4IaJetWrq9KiV+3SL6ILb94wluJTNcx6aR3px9o8sla5gbr6Bp5Ytoe/r8zgZ2NieeAiverVlWnRq3YbGRfKv287i7oGw1XzNrA2Qy988wTl1XXc9nYqb204xK3n9uNZverV5WnRK7sMi+nGkrsmEtM9kBvf/I5/f3fY6kjKgfJPVnH1yxtYta+AP88cxiOXDMZLlwF0eVr0ym69QgP58PazmNC/Bw8u2sWzX6TrdAluKP3YSWa9tI7sonJenzOWX4zvY3Uk1UZa9KpDhAT48vqcZK5JiWPu6izuWbiNqtp6q2OpDrJmfyE/m7eBemP48PazmDJIr6HoTHQSCtVhfL29eGrWcPqEB/P05+kcK63ilV8mExbsZ3U0ZYf3Nx/mD0t2kxjZhTdvHEt0t0CrI6kzpEf0qkOJCLdPSuDFa0ezM7eUK+au07H2nVRDg+GZL9J5ePEuzu7fgw9vP0tLvpPSolcOMX1EL96/ZRwnq+q4Yu46vjtYbHUkdQaqauv59cJtzFudxbXjevP6nGRCAnytjqXaSYteOcyYPmF8fOcEugf5cd2rm1i246jVkVQbFJfXcN1rm/h0Zx4PXzyIJ2cOw0fnk+/U9KenHKpPeDCL7pjAqLhQ7nl/Gy+tytQ57V3YgcJTzJq7jt25pcy9LonbJiXoGHk3oEWvHK57sB9v/yqFGaN68T9f7uOhRbuordelCV3N5uxirpi3nlNVdbx3y3guGR5tdSTVQXTUjXIKfx9vXvj5KPqEBfGPrzM5WlrJS9cl0VXP+7qEpdtz+f2HO4kNC2T+DSn0Dte55N2JHtErpxERfnvhQJ792Qg2ZB3nqnkbyC2ptDqWRzPG8OLXGdy7cDujeoey+I4JWvJuSIteOd3VyXEsuCmFoyWVzHxpHeuziqyO5JFOVtXyuw938Lfl+5k5qhdv35xCaJBe8+COtOiVJSb278GiOycQ5OfNta9u4rf/3k7RqWqrY3kEYwzLdhxl6nPfsGRbLvdOTeR/fz4Kfx9vq6MpB9Fz9MoyA6JC+PK+c3nx60xeXpPFyvQCHpw2iNlj43SiLAfJLirn8aW7WZtRxPCYbrw+J5kRsbpKmLvTpQSVS8gsKOPRj3ezKbuYpN6h/GXmcIb06mp1LLdRXVfPv1Yf4KXVmfh7e/H7aQO5blwfvPU/1E6trUsJatErl2GMYfHWXJ78LI3SylpumhjPfecPINhff/G0x7rMIh5bspsDReVcNrIXj106mMiuAVbHUh2grUWv/4KUyxARrhwTy9TBkTzzRTqvrs3mk515/PHyoVw4JEov3Dl/r8dlAAAJsklEQVRDBWVVPPlpGku3H6VPeBBv3ZTCuQMirI6lLKBH9MplpR4q5tGPd5N+rIzzB0fyx8uHEttdh/61pr7B8N7mwzz7RTrVtQ3cPjmBOycnEOCrb7a6Gz11o9xCbX0Db67L5n9XZABw7/mJ3Hx2X3x17pVm7c4t5dElu9lxpIQJCeH8eeYwEiK6WB1LOYgWvXIruSWV/GnZHpbvzWdAVBeenDWcsfFhVsdyGaeq63h++X7mr88mLNiPP1w6hBmjeunpLjenRa/c0oq9+fxx2R5ySyq5OjmWhy4e7NELmxhj+GL3Mf70n73kl1VxbUpvHrhoEN2CdGoJT6Bvxiq3dMGQKCb2D+fvX2Xw2rfZrNibz5wJ8VyZFEtcmOecv6+uq+frtALe3XSYbzOLGBzdlbnXJ5HUu7vV0ZQL0iN61WmlHzvJU5+lszajEGMgpW8YVybFcMnwaLdcJMMYw46cUhal5vCfnUcpqaglMsSfW8/txw0T4nXOeA+kp26Ux8gtqWTJtlwWpeZwoKicAF8vLhrakyuTYpnYv0envygor7SSxVtzWbw1h6zCcvx9bH++MbFMTAjXgvdgWvTK4xhj2H6khEVbc/jPjjxKK2uJ6urPzNEx/CwplsSoEKsjtllFTR1f7D7G4q25rMsqavyNJT6MK5JiuGREtE7vrAAteuXhquvqWZlWwKLUHFbvL6S+wTAithtXJsVy2cheLvkGbkODYVN2MYu25vD5rjzKa+qJCwvkitGxXJEUQ5/wYKsjKhdjedGLyDTg74A38Jox5umWttWiV45UWFbN0u25LN6ay968k/h6C1MGRnLlmFimDIzEz8faUx8Hi8pZtDWHxVtzyS2ppIu/D5cMbzz1NDY+TCd4Uy2ytOhFxBvYD1wA5ADfAdcYY/Y2t70WvXKWtLyTLErNYcn2oxSdqqZ7kC/DYroR2z2I2O6BP3zEhAYRGeLfYSV7qrqO3BOV5JZUkHOiktwTleScqCS7qJy9eScRgbP79+BnY2K5cEhPAv30KlbVOquL/izgj8aYi2xfPwxgjPlrc9tr0Stnq6tvYE1GIZ/syCOr8BQ5Jyo5Xl7zo238vL2IDg1oLP/QIGJ++E8gkNiwIKJC/H94I7S0stZW3hXkllT+X5mXVJB7opITFbU//t4+XsSGBhLTPZAJCT2YNTqGnt10ojF1ZqweRx8DHGnydQ4wzkGvpdQZ8/H24rxBUZw3KOqH+ypq6jhaUsmRJkfcjaVdwdf7Cigs+/HCKN5eQlSIP2XVdZRV1f3osUBf7x/+YxgZG/rDbwzf39cjuON+W1CqNY4q+ub+Bv/oVwcRuRW4FaB3794OiqFU2wX5+dA/MoT+kc2PzqmqredoSeUPR+w5JyrIK6kiJMDHVuBBjUf73QMJC/bT6QeUy3BU0ecAcU2+jgWONt3AGPMK8Ao0nrpxUA6lOkyArzf9IrrQTycJU52Mo4YbfAckikhfEfEDZgPLHPRaSimlfoJDjuiNMXUicjfwJY3DK98wxuxxxGsppZT6aQ6b1MwY8xnwmaO+v1JKqbbRSTKUUsrNadErpZSb06JXSik3p0WvlFJuToteKaXcnEtMUywihcAhO75FD6Cog+I4guazj+azj+azjyvn62OMiWhtI5coenuJyJa2TOxjFc1nH81nH81nH1fP1xZ66kYppdycFr1SSrk5dyn6V6wO0ArNZx/NZx/NZx9Xz9cqtzhHr5RSqmXuckSvlFKqBZ2i6EXkKhHZIyINIpJ82mMPi0imiOwTkYtaeH6YiKwQkQzbbXcH5/23iGy3fRwUke0tbHdQRHbZtnPaWooi8kcRyW2S8ZIWtptm26+ZIvKQE/P9j4iki8hOEflYREJb2M5p+6+1fSGN/mF7fKeIJDkyTzOvHyciq0QkzfZv5d5mtpksIqVNfu6POznjT/68rNyHIjKwyX7ZLiInReS+07axdP/ZxRjj8h/AYGAgsBpIbnL/EGAH4A/0BbIA72ae/yzwkO3zh4BnnJj9OeDxFh47CPSwYH/+Ebi/lW28bfuzH+Bn289DnJTvQsDH9vkzLf28nLX/2rIvgEuAz2lcXW08sMnJP9NoIMn2eQiwv5mMk4FPnP33ra0/L6v34Wk/72M0jlF3mf1nz0enOKI3xqQZY/Y189AMYKExptoYkw1kAiktbLfA9vkCYKZjkv6YNK4ldzXwvjNer4OlAJnGmAPGmBpgIY370eGMMcuNMd8vwrqRxhXKrNSWfTEDeMs02giEiki0swIaY/KMMVttn5cBaTSu3dyZWLoPm5gKZBlj7LmI06V0iqL/Cc0tQt7cX+4oY0weNP6DACKdkA3gHCDfGJPRwuMGWC4iqbY1dJ3pbtuvx2+0cCqrrfvW0W6i8SivOc7af23ZF66yvxCReGA0sKmZh88SkR0i8rmIDHVqsNZ/Xq6yD2fT8sGZlfuv3Ry28MiZEpGvgJ7NPPSoMWZpS09r5j6nDCNqY95r+Omj+YnGmKMiEgmsEJF0Y8waR+cD5gF/pnFf/ZnG00s3nf4tmnluh+3btuw/EXkUqAPebeHbOGz/nR63mftO3xeW/V38UQiRLsAi4D5jzMnTHt5K4+mIU7b3ZZYAiU6M19rPy/J9KI1Ln14OPNzMw1bvv3ZzmaI3xpzfjqe1ugi5Tb6IRBtj8my/Cha0J2NTreUVER/gCmDMT3yPo7bbAhH5mMZTBB1SVG3dnyLyKvBJMw+1dd+2Sxv23xxgOjDV2E6QNvM9HLb/TtOWfeHQ/dUWIuJLY8m/a4xZfPrjTYvfGPOZiMwVkR7GGKfM49KGn5fl+xC4GNhqjMk//QGr9589Ovupm2XAbBHxF5G+NP7vurmF7ebYPp8DtPQbQkc6H0g3xuQ096CIBItIyPef0/gG5G4n5OK0856zWnhdyxZ4F5FpwIPA5caYiha2ceb+a8u+WAb80jZyZDxQ+v3pQmewvR/0OpBmjHm+hW162rZDRFJo/Pd/3En52vLzsnQf2rT4W7iV+89uVr8b3JYPGssoB6gG8oEvmzz2KI0jIvYBFze5/zVsI3SAcGAlkGG7DXNC5vnA7afd1wv4zPZ5PxpHb+wA9tB4ysJZ+/NtYBewk8Z/XNGn57N9fQmNozeynJwvk8ZztdttH/+yev81ty+A27//GdN42uEl2+O7aDI6zEn77GwaT3PsbLLfLjkt4922fbWDxje5JzgxX7M/Lxfbh0E0Fne3Jve5xP6z90OvjFVKKTfX2U/dKKWUaoUWvVJKuTkteqWUcnNa9Eop5ea06JVSys1p0SullJvToldKKTenRa+UUm7u/wNSv3FaOXnJdgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# We plot the graph of y = x^2\n", "x = np.arange(-10, 10) # x coordinate\n", "#print(x)\n", "y = x**2 # y coordinate\n", "\n", "plt.plot(x, y) # Plot the graph\n", "plt.show() # You need to call plt.show() to show the plotted graph" ] }, { "cell_type": "code", "execution_count": 2, "id": "b5de47ba9ac88872", "metadata": { "ExecuteTime": { "end_time": "2024-09-23T05:04:10.355195Z", "start_time": "2024-09-23T05:04:10.029095Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEWCAYAAACqitpwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmclWX9//HXZ/aNfZF9UzHBFHXEfcsNzCSXFCV3UyvN+lWWX/36tczKTC2zLHNJLQXLBVIMNRfSXABFEERFUBjWgWGbYfb5/P6474HDcAaG4Zxzn5l5Px+P8zj3uZdzf859Zs7nvq7rvq/L3B0REZFEyog6ABERaX+UXEREJOGUXEREJOGUXEREJOGUXEREJOGUXEREJOGUXCQlzGyemR0X4f7/YmY/S8L7TjCzFxL9vm2dmb1qZpe3ctuLzez1mNflZjYsnE7K9yiJp+QiKeHuI9391Zasa2afmdmJSQ5pl5nZEDNzM8tqnOfuf3P3k5Owr+PMrCTR79sa8T53Kt/b3YvcfVGi9y3JpeQibU4yfuREJLGUXCQlYksjZnazmT1hZo+Y2aawyqw4XPYoMAj4Z1gdcl3M2e1lZrYEeDlc9/Rw2/VhNcy+Mfs70MzeDd9/EpAXs2ybapdwnpvZXuF0vpndYWafm9kGM3vdzPKB6eHq68PYDo9ThXOEmc0It5thZkfELHvVzG4xszfCuF4ws55xjlUh8DzQL9xPuZn1M7NcM/uNmS0PH78xs9xmjvfF4X7uCo/PojC2i81sqZmtNrOLYtb/spm9Z2Ybw+U3x7xdc5/7DTP7XfhZF5jZCc3EkmFmN4bHc3X4vXdp7r3jbL/luwn1NLMXw2P4mpkNjrdfiZaSi0TldGAi0BWYAtwD4O4XAEuAr4TVIb+K2eZYYF/gFDMbDjwOfBfoBUwlSEg5ZpYDPAM8CnQH/g6ctQux/Ro4GDgi3P46oAE4JlzeNYztzdiNzKw78BxwN9ADuBN4zsx6xKx2PnAJ0BvIAX7QdOfuXgGMBZaH+yly9+XADcBhwCjgAGA0cOMOPsehwJwwlscIjvchwF7A14F7zKwoXLcCuJDg+/gy8E0z+2q4rLnPfSiwCOgJ/B/wVHgMmro4fBwPDAOKCL/vHbz3jkwAbgn3Oxv4Wwu2kRRTcpGovO7uU929niAJHNCCbW529wp3rwTOBZ5z9xfdvZYgIeQTJITDgGzgN+5e6+7/AGa0JCgzywAuBa5192XuXu/u/3X36hZs/mXgE3d/1N3r3P1xYAHwlZh1HnL3j8PP8ARBomipCcBP3X21u5cCPwEu2MH6i939ofAYTwIGhttXu/sLQA1BosHdX3X3ue7e4O5zCBL3sTuJZzVbj/Ek4KPwGMSL+053X+Tu5cD1wPjdqN58zt2nh9/JDcDhZjawle8lSaLkIlFZGTO9GchrwY/N0pjpfsDnjS/cvSFc3j9ctsy37ZX1c1qmJ0EV2qctXD/WNjHF7Ld/zOumn7uIlmv6/p+H85qzKma6EsDdm84rAjCzQ83sFTMrNbMNwFUEx2JH4h3jePHEizsL2GMn79+cLX8HYbIqa2a/EiElF0lHzXXVHTt/ObClrt3MjODMfBmwAugfzms0KGa6AiiI2bZPzLI1QBWw5y7EFTemmP0u28l28cTbV9P3HxTOS4THCKonB7p7F+CPQOPxa+5zxzvG8eKJF3cdQfJrTbfsW0opYbVe92b2KxFScpF0tIqgbn5HngC+bGYnmFk28H2gGvgv8CbBj9d3zCzLzM4kaJ9o9D4w0sxGmVkecHPjgrAE9CBwZ9iInhk2YOcCpQRtL83FNhUYbmbnh/s9FxgBPLtLnz6wCugR0/ANQVXVjWbWK7wQ4Cbgr61473g6AWXuXmVmownahho197l7ExzjbDP7GkF72NQ47/048D0zGxomg58Dk9y9bgfvvSOnmtlRYdvaLcDb7r50ZxtJaim5SDr6BcGP6Hoz267BG8DdPyJolP4dQWnjKwQXAdS4ew1wJkEj8jqC9pmnYrb9GPgp8BLwCbDNlWMEjexzCdppyoDbgAx33wzcCrwRxnZYk5jWAqcRJLq1BBcCnObua3b1ALj7AoIf5UXhvvoBPwNmEjTSzwXeDeclwreAn5rZJoKk9URMLM197reBvQmO/63A2eExaOpBgna16cBigpLhNTt57x15jOACgjKCCy8m7OJnlRQwDRYmIrvKzC4GLnf3o6KORdKTSi4iIpJwSi4iIpJwqhYTEZGEU8lFREQSrsN2ANizZ08fMmRI1GGIiLQps2bNWuPuvXa2XodNLkOGDGHmzJlRhyEi0qaYWYt6u1C1mIiIJJySi4iIJJySi4iIJFxatrmY2T4EXYQ3GkbQJUVX4BsE/REB/I+7Tw23uR64DKgHvuPu03Z1v7W1tZSUlFBVVbU74aetvLw8BgwYQHZ2dtShiEg7l5bJJew3ahSAmWUS9Cr7NMEgS3e5+69j1zezEcB4YCRB19svmdnwcByLFispKaFTp04MGTKEbTt7bfvcnbVr11JSUsLQoUOjDkdE2rm2UC12AvCpu+/oCoVxwMRwEKTFwEK27QW3RaqqqujRo0e7SywAZkaPHj3abalMRNJLW0gu4wl6h210tZnNMbMHzaxbOK8/2w4kVcK2AzQBYGZXmNlMM5tZWlradHHjOgkKO/20588mIuklrZNLOF7D6QRjoAPcSzCI0yiCAaHuaFw1zubb9Wvj7ve5e7G7F/fqtdN7gERE2peGBph2A6xtzUCruyatkwswFni3cWhWd18VjmneAPyZrVVfJcSMTgcMoJ2NTFdeXk5xcTHDhg1j+fJtP9qECRPYZ5992G+//bj00kupra2NKEoRSWuzHoI374HP30j6rtI9uZxHTJWYmfWNWXYG8EE4PQUYb2a5ZjaUYACjd1IWZZLV1dVxzjnncMEFF3D77bczbtw4Nm7cuGX5hAkTWLBgAXPnzqWyspL7778/wmhFJC1tWAYv/h8MPRYOvCDpu0vLq8UAzKwAOAm4Mmb2r8xsFEGV12eNy9x9npk9AcwnGN7227t6pVg6mDFjBpdddhnvvPMO9fX1jB49mkmTJnHXXXcxduxYrrnmGgAyMzMZP348kydPJjs7m1NPPXXLe4wePZqSkpKoPoKIpCN3eO770FAHX/ktpKD9tcN2uV9cXOxN+xb78MMP2XfffQH4yT/nMX/5xnibttqIfp35v6+M3OE6N954I1VVVVRWVjJgwACuv/76Fr9/bW0thx56KL/97W85+uij464T+xlFpIP44En4x6Vw8s/giGt2663MbJa7F+9svbQtuXRUN910E4cccgh5eXncfffdu7Ttt771LY455phmE4uIdECby2DqddDvIDj0mynbrZJLM3ZWwkiWsrIyysvLqa2tpaqqisLCwhZt95Of/ITS0lL+9Kc/JTlCEWlT/nU9VK2H0ydDZup+8tO9Qb/DueKKK7jllluYMGECP/rRj1q0zf3338+0adN4/PHHycjQVyoioU9egjkT4ajvQZ/9UrprlVzSyCOPPEJWVhbnn38+9fX1HHHEEbz88st86Utf2uF2V111FYMHD+bwww8H4Mwzz+Smm25KRcgikq6qN8Gz34Wew+GYH6Z890ouaeTCCy/kwgsvBIIrwt5+++0WbVdXV5fMsESkLfr3LbChBC6dBlm5Kd+96lBERNqbJW/DO/fB6G/AoEMjCUHJRUSkPamrhinXQOf+cEJ01eOqFhMRaU+m/xrWfAQT/gG5nSILQyUXEZH2YtU8eP1O2P9c2PukSENRchERaQ8a6mHy1ZDXBU75RdTRqFpMRKRdeOteWP4unPUAFPaIOhqVXNqKHXW5f9lll3HAAQew//77c/bZZ1NeXh5RlCISibLF8PLPYPgY2O+sqKMBlFzahJ11uX/XXXfx/vvvM2fOHAYNGsQ999wTYbQiklLu8M9rISMLvnxnSno8bgkllzQyY8YM9t9/f6qqqqioqGDkyJF88MEHXHnllYwdO5Zrr72Ws846ixtuuIHx48dvGRSsc+fOALg7lZWVGs5YpCN576+w+DU46Wbost3o7pFRl/sxtumO/vkfw8q5id1pny/C2F/ucJXWdrl/ySWXMHXqVEaMGMFzzz1HQUFB3PXU5b5IO7JpJfx+NPQeCRc/BynoW7ClXe6r5JJmbrrpJl588UVmzpzJdddd1+LtHnroIZYvX86+++7LpEmTkhihiKSNqT+E2io4/XcpSSy7QleLNWcnJYxkaW2X+xD0R3buuedy++23c8kllyQxShGJ3Pwp8OGU4C78nntFHc120ivVyS53ue/uLFy4cMv0P//5T77whS8kO0wRiVLlOpj6g6Cq/YjvRB1NXCq5pJHWdLnv7lx00UVs3LgRd+eAAw7g3nvvTWHUIpJyL/wvVKyB85+AzOyoo4krbZOLmX0GbALqgTp3Lzaz7sAkYAjwGXCOu68L178euCxc/zvuPi2CsHdLa7rcz8jI4I033kh2aCKSLha9Cu89CkdeC/1GRR1Ns9K9Wux4dx8Vc2XCj4F/u/vewL/D15jZCGA8MBIYA/zBzDKjCFhEJGmqNgb3tHQfBse17ErSqKR7cmlqHPBwOP0w8NWY+RPdvdrdFwMLgdERxCcikhwN9fDk5bB+KYz7PWTnRx3RDqVzcnHgBTObZWZXhPP2cPcVAOFz73B+f2BpzLYl4bxtmNkVZjbTzGaWlpbG32k7vu+nPX82kXbvpZvhk2lw6q9g8BFRR7NT6ZxcjnT3g4CxwLfN7JgdrBvvlvTtfknd/T53L3b34l69em23QV5eHmvXrm2XP8Luztq1a8nLy4s6FBHZVbMfg//eDYdcHjzagLRt0Hf35eHzajN7mqCaa5WZ9XX3FWbWF1gdrl4CDIzZfACwbe+OLTBgwABKSkporlTT1uXl5TFgwICowxCRXbHk7aCdZeixMCaa++9aIy2Ti5kVAhnuvimcPhn4KTAFuAj4Zfg8OdxkCvCYmd0J9AP2Bt7Z1f1mZ2czdOjQBHwCEZEEWL8EJk2ALgPga39J28uO40nL5ALsATwddsCYBTzm7v8ysxnAE2Z2GbAE+BqAu88zsyeA+UAd8G13r48mdBGRBKguh8fPh7oauHgSFHSPOqJdkpbJxd0XAQfEmb8WOKGZbW4Fbk1yaCIiydfQAE9fCavnwfl/h17Do45ol6VlchER6dBe/TkseDZoY9n7xKijaZV0vlpMRKTjmfsPmH47HHQhHHpV1NG0mpKLiEi6KJkFz3wLBh0Bp96RNqNKtoaSi4hIOti4HCaeD532gHMfhaycqCPaLWpzERGJWs3mILHUlMMFL0Jhz6gj2m1KLiIiUXKHyd+G5bPhvMdhjxFRR5QQSi4iIlGafjvMewpO/AnsMzbqaBJGbS4iIlGZPxleuRUOOC8Yn6UdUXIREYnCivfh6atgwGg47Tdt+sqweJRcRERSbdMqePw8yO8O5/4Vsttfb+VqcxERSaXaqqAzysp1cOm/gkuP2yElFxGRVHEPus8vmQHnPAp9t+tCsd1QtZiISCrU1wZ338+ZCMffCCNOjzqipFLJRUQk2Woq4O8XwycvwPE3wDE/iDqipFNyERFJps1l8Ng5sGxWcFVY8SVRR5QSSi4iIsmyfin89UxY9zmc8wjs+5WoI0oZJRcRkWRY/SE8emZQJXbB0zDkyKgjSiklFxGRRFvyVlAVlpUPl0yFPvtFHVHK6WoxEZFE+uh5eGQcFPaCy17okIkFlFxERBLnvb/CxAnQe1+4dBp0Gxx1RJFJy+RiZgPN7BUz+9DM5pnZteH8m81smZnNDh+nxmxzvZktNLOPzOyU6KIXkQ7HHf5zR9B1/rBj4aJn28WYLLsjXdtc6oDvu/u7ZtYJmGVmL4bL7nL3X8eubGYjgPHASKAf8JKZDXf3+pRGLSIdT0MDTLse3v4jfPFrMO4PbX4UyURIy5KLu69w93fD6U3Ah0D/HWwyDpjo7tXuvhhYCIxOfqQi0qHV1cBTlweJ5bBvwxn3KbGE0jK5xDKzIcCBwNvhrKvNbI6ZPWhm3cJ5/YGlMZuVECcZmdkVZjbTzGaWlpYmMWoRafeqN8FjX4MPngwG+jrlVshI+5/UlEnrI2FmRcCTwHfdfSNwL7AnMApYAdzRuGqczX27Ge73uXuxuxf36tUrSVGLSLtXXgp/OQ0W/we+ei8c9d12Nx7L7krXNhfMLJsgsfzN3Z8CcPdVMcv/DDwbviwBBsZsPgBYnqJQRaQjKVsc3HW/cUUw5v1wXT8UT1qWXMzMgAeAD939zpj5fWNWOwP4IJyeAow3s1wzGwrsDbyTqnhFpIP4eBo8cHIwFstFU5RYdiBdSy5HAhcAc81sdjjvf4DzzGwUQZXXZ8CVAO4+z8yeAOYTXGn2bV0pJiIJU7EW/vVjmPsE9PoCfO1h6P2FqKNKa2mZXNz9deK3o0zdwTa3ArcmLSgR6Xjcgwb756+Dqo1w7I/h6P8HWblRR5b20jK5iIhEbuNyeO778NFU6HcQjLsH9hgZdVRthpKLiEgsd3j3YXjhf4PRI0/+GRz2LcjIjDqyNkXJRUSkUdkimPId+Ow/MORo+MpvoceeUUfVJim5iIg01MNb98LLP4PM7CCpHHihborcDUouItKxrZoPU64OhiEePhZOuxM694s6qjZPyUVEOqa6Gnj9Tpj+a8jrDGc9APudpTvtE0TJRUQ6npJZQWll9fygJ+Mxt0Fhj6ijaleUXESk4ygvhTd+A2/9AYr6wHmTYJ8xUUfVLim5iEj7t3IuvPVHmPt3qK+Ggy+Bk34aVIdJUii5iEj71FAfjGf/9h+DS4uzC+CgC2D0ldBreNTRtXtKLrvo9U/W8OL8lQzsXsDgHoUM7lHAoO4F5GXrBiuRtFC1IRjL/u0/wfrPoctAOOmWILHkd9v59pIQSi67aNGacp56dxmbquu2md+7U26YaLYmnEE9ChjcvYDuhTmYrkARSa61nwYJZfbfoKYcBh0OJ98C+3wZMvVTl2rmvt2YWh1CcXGxz5w5s1XbujvrN9fyedlmPl9bwdKyzXy+djOfl21madlmVmyo2mb9otysoKTTvYDBPQoY2L2A/t3yGdA1n/7d8inI0R++SKu4w6JXg6qvj6dBRlZwOfFhV0G/A6OOLm2UV9exbF0ly9ZvZtm6SkYP7cE+fTq16r3MbJa7F+9sPf2qtYKZ0a0wh26FOYwa2HW75VW19ZSsCxLOkrKtzwtLy3n5o9XU1DVss363gmz6d8unf9d8+nct2DI9IHzuWpCtko9IrNpKmDMpaKQv/RAKe8Gx10HxZdBpj6ijSyl3Z93m2i3Jo2RdJcvWV4avg8f6zbXbbHPTaSNanVxaSsklCfKyM9mrdyf26r39l9fQ4KzeVB33j2BRaQX/+WQNm2u2HYqmMCeTfo3Jpls+/brm07dLHnt0zqNvl3z6dM4jP0dtPtLO1dfCsneDXorffQQqy6DPF2HcH4LSSnZe1BEmxeaaOlZuqAoeG6tYsaGK5esrt/x+LF9fGfc3o/Ek9cBBXbc7ae1VlPwhA5RcUiwjw+jTJY8+XfI4ePD2yxur3Jatr6Rk3fYJ6L2l67c7CwHonJdF3y757NEljz6dc+kTJp0+XXLp0zmfPl3y6KYSkLQl7lC6IKj2WvQqfPYG1GwCy4B9Tg16Kh58RJu9o97dKauoYeXGrYlj1YYgeazcWMWqMJFsqqrbbtvG2o49exVyzN69tpx4NiaPLvnR/68ruaSZ2Cq3/fp3ibtOvDOZVTF/oAtWbKS0vJqmzWk5WRlBwumcR69OuVsePYtygumiYH6PohyyM9Vhn0Rg/VJY/Bosei14Ll8VzO8+DPb/Ggw7LuituKB7lFHuUE1dA2srqindFDzWlG+dLg2ng+RRvV0VuVlwcVCfznkM6VHI4cN6sEeXvG1qKvbonNsm2mnTP0LZTkFOFsN6FTGsV1Gz69TWN1C6qXpL4tkmAW2o4sMVG5n+SXXcsyIIzoy2JKCixiS09bl7Yc6Why7DllarXAeL/7O1dFL2aTC/sFeQSIYeC8OOha6DoosRqKypp2xzDesqalhbUcOa2KRRvm0iWRenZgGgU17Wlv+fAwd2i0kYeVsSSK+iXLLayYmdkks7lZ2ZQb+uQfvMjlTV1m97dlW+/dnWu0vWs3pTFVW1DXHfIz87k+6FOXQrzKZbQZBwtjwX5tC9YGsialxHJaMOqKE+GN1xzcfBTY2LXoXlswGHnCIYfCQccnmQTHqPSFp1V01dA+s311C2uYayihrWVdRuSRxlFTWsC+cHy4L1dvS333gStmevIg4d1n1LDUBsrUDPotwOdxLWbpKLmY0BfgtkAve7+y8jDqlNyMvOZGD34PLoHXF3Kmq2JqLYf7zgn7J2yz/lkrLNlFXUNFsqAijIyaRzXjZd8rPpnJ8VPOdl0zk/eASvw/mNr8PnwpzMyOuTpRm1lbDuMyhbHDyvW7x1ev3nUF8TrJeRBQNGw3E/Dkoo/Q8OxlFpAXenvLqOjVV1bNhcy8aqWjZU1rKxMnyuqmPjNq8bl9exobKWytr6Zt+7U14WPcKToj6d89i3b+eYk6WtJ0+NpfjC3HbzE5pw7eLImFkm8HvgJKAEmGFmU9x9frSRtR9mRlFuFkW5WQztWdiibWrqGlhfGZwZrq2o3uYMcWOTf/rl66tYULWJDZW1O0xKABkGhblZFOZkUZibSVFuFgU5WRTmZlGUmxksa7q8cVm4Xl52JnnZGeFzJnlZGe2mOiJp3KGuOrgDfv2SbRNH43T5ym03yelEQ7ch1HXfh5ohJ1NZNJCKwkGs6fJFNnku5dX1VKyso+LzpVRU11NRU0d5dR2bq+uCZdV1VNTUBc8xrxt2cHueGXTKzYo5SclmWM+ibU5iuhU2LWGrRJ1o7SK5AKOBhe6+CMDMJgLjACWXCOVkZdC7Ux69O+UBLb+mvr7BKa+qi3NGuvXsM/YHp7w6mF62vjKcF/xAVdfFr8poTnamkZeVSe42iSeD/DAB5WZtnZ+dmUF2ppGdmUFWppGTmUFWRsx0uGzrOhlkZxjZGZDrVWTgZBhk0oDhZNBAhkGGOebhazx4jW+ZzsDJ8AYcxxvqaWgInt0b8IaGLdO4x8xrwL0eb3DweryhHmoqsJpyqK3AqsvJrCsno7aCzNoKMus2k1VbQVZ9Bdl1FWTXV5JTX0FO/WYy2f6sf21GD1Zk9KHERrI060t81tCbRfW9WFjbk9KqItgYr5Q5N+53kJedseUEoPFkoXthDgO7FVAYnjgU5WaFpdxtS7yNpdtOuVlkZKhkG7X2klz6A0tjXpcAh0YUi+ymzAyjS0E2XQqyGbgb71NX30BFTf02CWdzTZCMqmrrqa5toKqunsqaeqrC6araYLq6tp7K2q2vy6vrKNtUSZeaVXStXUle/WbMN5PVsBlrqCTLKymkkkKqKLJKCqimyILXhVRSaNVbntNRtWexmTwqyKPc8ykjjwrPo4KeVFo+lVZAleVRlVFAVUYBa7P6sDanH+tz+5KRXUB+Tph4w+T8hewMRmVnhok5TNRZmeSG00UxyaOx1FmYk6nSYzvSXpJLvNOU7QrOZnYFcAXAoEHRXn0iyZeVmUGX/Ay65LesLh+A6vKwmmfp9lU+G5dCQ5MqOyNo5QM8pwiyC/GcQhpyimjI7k5DdgH1WYXUZRdSlVVIeWYBtZn5uGWG5ZXGcglhWcWCeRZOe/A6WM/CdQDLxDIseDbDMmJeY1hGxpZ1zDKxjIzgYRlgGWTkdiIjr5CMvE5k5nUiKyeP7EyjMCODrlkZZGUEJa5MlQCkldpLcimBbU5yBwDLm67k7vcB90HQt1hqQpO0U74ayhbFNDwv3vpcUbrtunldoftQ6DcKRp4RTHcdBHldgiuccoogN0gqlhGcdRug82/p6HaaXMzsSGC2u1eY2deBg4DfuvvnSY+u5WYAe5vZUGAZMB44P9qQJG1UrIXPpof3UrwWJJEtDLoMgG5DYPiYIHl0Gxq87j5UXbSLtFJLSi73AgeY2QHAdcADwCPAsckMbFe4e52ZXQ1MI6ikeNDd50UclkSlZjMs+W+QSBa9GoxCiENOJxhyVHAvRc/hW0shWcnvZ0mko2lJcqlzdzezcQQllgfM7KJkB7ar3H0qMDXqOCQC9XWw/L0gkSx+DZa+HdxPkZENA0fD8f8T3EvR78AW30shIrunJcllk5ldD3wdOCa8p0T/oRIddyj9KOyD6lX47HWo3hgs6/NFOPRKGHocDD4cclp2T46IJFZLksu5BO0Xl7n7SjMbBNye3LBE4ti4HGbcD7Mfg00rgnndhgQN7cOOg6HHQGHPCAMUkUY7TS7uvhK4M+b1EoI2F5HUKJkJb90L858J+qcaPiboNmTosUG7iYiknWaTi5m97u5Hmdkmtr1nxAB3985Jj046rvpamD85GL62ZAbkdobRV8LobyihiLQBzSYXdz8qfE7uWJgisTaXwayH4J37YdPyYByPsb+CUedDrv4URdqKltzncqK7v9Rk3kXu/nDywpIOZ9X8oJQyZxLUVQVtKKfdBXufDBm6JVGkrWlJg/5NZnYW8AOgCLgfqAaUXGT3NDTAJy/AW38IrvzKyoP9z4VDr4I9RkQdnYjshpYkl2OB7wOzw9c3ufvjyQtJ2r3qTcEVX2//MeiGpVM/OOEmOOhiKOwRdXQikgAtSS7dCHoY/pSgz67BZmbuTUdoF9mJhvogobz6y+C+lAGHwPE3wIhxurlRpJ1pSXJ5C/iluz9oZvnAbcAbwBFJjUzal9UfwuSrYdlM2Ouk4FLiAcVRRyUiSdKS5HJieG8L7l4JfMfMjkluWNJu1NXA63fB9NshrzOc9QDsd1bSxkcXkfTQkpsol5hZN2BvIC/5IUm7sWwWTL4GVs+D/c6GsbfpDnqRDqIllyJfDlxL0N4yGzgMeBP4UnJDkzarZjO8+nN48/dQ1AfOmwj7jI06KhFJoZZUi10LHAK85e7Hm9kXgJ8kNyxpsxb/B6ZcE4yZcvAlcNJPgoG1RKRDaUlyqXL3KjPDzHLdfYGZ7ZP0yKRtqdoAL94Es/4SDLZ10T+DjiRFpENqSXLWKQPPAAAUPUlEQVQpMbOuwDPAi2a2jjhDCEsH9tG/4NnvQflKOOIaOO5/IKcg6qhEJEItadA/I5y82cxeAboA/0pqVNI2VKyB538EH/wDeo+Ac/8KAw6OOioRSQMtKbls4e6vJSsQaUPc4YMn4fnroGpjUFI56nuQlRN1ZCKSJnYpuYhQXgpTroaP/wX9i2HcPdB736ijEpE0o+QiLVe2GB49IxgF8pSfBx1MZmRGHZWIpKGd9mVuZleHN1GmhJndbmYLzGyOmT0dXkyAmQ0xs0ozmx0+/hizzcFmNtfMFprZ3Wa6/TvhVrwPD5wMVevhomfh8G8rsYhIs1oyUEYfYIaZPWFmY1Lww/0isJ+77w98DFwfs+xTdx8VPq6KmX8vcAVBLwJ7A2OSHGPHsng6PPRlyMyBS6fBwEOijkhE0txOk4u730jwg/0AcDHwiZn93Mz2TEZA7v6Cu9eFL98i6BmgWWbWF+js7m+GPTU/Anw1GbF1SPOehr+eBV0GwGUvQC/d4iQiO9eiIf7CH+2V4aOOoBv+f5jZr5IYG8ClwPMxr4ea2Xtm9pqZHR3O6w+UxKxTEs7bjpldYWYzzWxmaWlpciJuT975M/z9Euh3EFz6PHSJe1hFRLbTkr7FvgNcBKwhGIXyh+5ea2YZwCfAdbu6UzN7iaC6rakb3H1yuM4NBInsb+GyFcAgd19rZgcDz5jZSCBeNV3csWbc/T7gPoDi4mKNR9Mcd3jl5zD9VzB8LJz9oG6KFJFd0pKrxXoCZ7r757Ez3b3BzE5rzU7d/cQdLTezi4DTgBMaByVz92qC4ZVx91lm9ikwnKCkElt1NgD1INB69XUw9ftBNy4Hfh1O+y1k6qJCEdk1LWlzualpYolZ9mGiAzKzMcCPgNPdfXPM/F5mlhlODyNoB1rk7iuATWZ2WHixwYXA5ETH1SHUVsHfLwoSy9Hfh9PvUWIRkVZJx1+Oe4Bcgn7MIOiN+SrgGOCnZlYH1ANXuXtZuM03gb8A+QRtNM83fVPZicr18Ph5sORNGHMbHHbVzrcREWlG2iUXd9+rmflPAk82s2wmsF8y42rXNq4Irghb8zGcdT988eyoIxKRNi7tkouk2JpP4NEzobIMJvwd9jw+6ohEpB1QcunISmbB384Gy4CLn4V+B0YdkYi0Ey26z0XaoYUvwcNfgdxOwc2RSiwikkBKLh3RnCfgsXOh+zC47EXokZTOFkSkA1Ny6WhmPwZPfQMGHQ6XPAed9og6IhFph9Tm0pEseQumfAeGHgvnPwHZeVFHJCLtlEouHcX6JTBxAnQdBOc8rMQiIkml5NIRVJcHN0jW18J5EyE/ZcPziEgHpWqx9q6hAZ66AlbPhwn/gF7Do45IRDoAJZf27pWfwUfPBV267HVC1NGISAeharH2bM4T8J874KCL4NAro45GRDoQJZf2qmQmTL4aBh8Jp/4akj46tYjIVkou7dGGZTDxfOjUB855FLJyoo5IRDoYtbm0NzWbYeJ5UFMBF06Gwh5RRyQiHZCSS3vS0ADPfBNWzAkuOe69b9QRiUgHpeTSnkz/Fcx/Bk76KewzJupoRKQDU5tLezHvaXj1F3DAeXDEd6KORkQ6OCWX9mD5bHj6mzBgNHzlt7oyTEQip+TS1m1aGXTtUtADxv8NsnKjjkhERG0ubVptZXDJcdV6uHQaFPWOOiIRESANSy5mdrOZLTOz2eHj1Jhl15vZQjP7yMxOiZl/sJnNDZfdbdYB6oXcg+7zl82CM/4EffePOiIRkS3SLrmE7nL3UeFjKoCZjQDGAyOBMcAfzCwzXP9e4Apg7/DR/i+Vev0umPsEfOlGGHF61NGIiGwjXZNLPOOAie5e7e6LgYXAaDPrC3R29zfd3YFHgK9GGWjSLXgO/v1T2O8sOPoHUUcjIrKddE0uV5vZHDN70MwaBx/pDyyNWacknNc/nG46fztmdoWZzTSzmaWlpcmIO/lWfwhPfgP6jYJxv9eVYSKSliJJLmb2kpl9EOcxjqCKa09gFLACuKNxszhv5TuYv/1M9/vcvdjdi3v16pWAT5Ji9XXBHfjZ+TD+8eBZRCQNRXK1mLuf2JL1zOzPwLPhyxJgYMziAcDycP6AOPPbn7fvheXvwdkPQee+UUcjItKstKsWC9tQGp0BfBBOTwHGm1mumQ0laLh/x91XAJvM7LDwKrELgckpDToVyhbBy7fCPqfCyDOijkZEZIfS8T6XX5nZKIKqrc+AKwHcfZ6ZPQHMB+qAb7t7fbjNN4G/APnA8+Gj/XCHf14Lmdnw5TvUziIiaS/tkou7X7CDZbcCt8aZPxPYL5lxReq9R2HxdDjtN9C5X9TRiIjsVNpVi0kTG1fAtBth8FHBcMUiIm2Akku6m/oDqK+G0++GDH1dItI26Ncqnc2fDAueheOuhx57Rh2NiEiLKbmkq8p18NwPoO8BcPjVUUcjIrJL0q5BX0LTboTNa+HrT0KmviYRaVtUcklHn74Cs/8KR16r3o5FpE1Sckk3NRXBPS099oJjfxR1NCIiraL6lnTz8q2w/nO45HnIzos6GhGRVlHJJZ2UzAr6Dyu+DAYfEXU0IiKtpuSSLupqYMrV0KkvnHhz1NGIiOwWVYuli9fvgtXz4fwnIK9z1NGIiOwWlVzSweoFMP122O9sGH5K1NGIiOw2JZeoNdTDlGsgtxOMvS3qaEREEkLVYlGbcT+UvANn3AeFPaOORkQkIVRyidL6JfDST2Cvk2D/c6KORkQkYZRcouIO//xuMPDXaXdpADARaVdULRaVOZPg03/D2Nuh68CooxERSSiVXKJQXgr/+jEMPAwOuTzqaEREEk7JJQrPXxf0IXb67zQAmIi0S2n3y2Zmk8xsdvj4zMxmh/OHmFllzLI/xmxzsJnNNbOFZna3WRo3YHz8Asx7Co65DnoNjzoaEZGkSLs2F3c/t3HazO4ANsQs/tTdR8XZ7F7gCuAtYCowBng+mXG2SkMDvPR/QY/HR14bdTQiIkmTdiWXRmHp4xzg8Z2s1xfo7O5vursDjwBfTUGIu27eU0EXL8ddD1k5UUcjIpI0aZtcgKOBVe7+Scy8oWb2npm9ZmZHh/P6AyUx65SE87ZjZleY2Uwzm1laWpqcqJtTXwev/Bx6j4SRZ6Z23yIiKRZJtZiZvQT0ibPoBnefHE6fx7allhXAIHdfa2YHA8+Y2UggXvuKx9uvu98H3AdQXFwcd52kmTMRyj6F8Y+pEV9E2r1Ikou7n7ij5WaWBZwJHByzTTVQHU7PMrNPgeEEJZUBMZsPAJYnOubdUlcNr94G/Q6EfU6NOhoRkaRL11PoE4EF7r6lusvMeplZZjg9DNgbWOTuK4BNZnZY2E5zITA53ptG5t1HYMMS+NKNuhNfRDqEtLtaLDSe7RvyjwF+amZ1QD1wlbuXhcu+CfwFyCe4Six9rhSrrYTpv4ZBR8CeJ0QdjYhISqRlcnH3i+PMexJ4spn1ZwL7JTms1plxP5SvhLMfVKlFRDqMdK0Wax+qNwUjTO75JRhyZNTRiIikjJJLMr39R9i8Fo6/MepIRERSSsklWSrXwRu/C64OG3DwztcXEWlHlFyS5b/3QPUGOP6GqCMREUk5JZdkqFgDb90b3InfJz2vMxARSSYll2R4/S6oqwz6EBMR6YCUXBJt4/Lg8uMDzlOX+iLSYSm5JNr0X0NDHRx7XdSRiIhERsklkdZ9FnT1ctCF0G1I1NGIiERGySWRXrsdLAOO+WHUkYiIRErJJVHWfALvPwaHXA6d+0UdjYhIpJRcEuXVX0BWPhz1vagjERGJnJJLIqz8AD54Eg67Cop6RR2NiEjklFwS4ZWfQ24XOOKaqCMREUkLSi67a9ks+Oi5ILHkd4s6GhGRtKDksrtevhXyuwdVYiIiAii57J7P/wuf/jtoxM/tFHU0IiJpQ8mltdzh37dAUZ/g8mMREdlCyaW1Pn0ZlvwXjvkB5BREHY2ISFpRcmkNd3j5Z9BlUNDVi4iIbCOS5GJmXzOzeWbWYGbFTZZdb2YLzewjMzslZv7BZjY3XHa3mVk4P9fMJoXz3zazIUn/AB89D8vfDTqnzMpN+u5ERNqaqEouHwBnAtNjZ5rZCGA8MBIYA/zBzDLDxfcCVwB7h48x4fzLgHXuvhdwF3BbUiNvaIBXboXuewbd6ouIyHYiSS7u/qG7fxRn0ThgortXu/tiYCEw2sz6Ap3d/U13d+AR4Ksx2zwcTv8DOKGxVJMU85+GVR/A8f8DmVlJ242ISFuWbm0u/YGlMa9Lwnn9w+mm87fZxt3rgA1Aj3hvbmZXmNlMM5tZWlraughzOsEXTguGMBYRkbiSduptZi8BfeIsusHdJze3WZx5voP5O9pm+5nu9wH3ARQXF8ddZ6eGnxw8RESkWUlLLu5+Yis2KwEGxrweACwP5w+IMz92mxIzywK6AGWt2LeIiCRIulWLTQHGh1eADSVouH/H3VcAm8zssLA95UJgcsw2F4XTZwMvh+0yIiISkUhapM3sDOB3QC/gOTOb7e6nuPs8M3sCmA/UAd929/pws28CfwHygefDB8ADwKNmtpCgxDI+dZ9ERETisY56kl9cXOwzZ86MOgwRkTbFzGa5e/HO1ku3ajEREWkHlFxERCThlFxERCThlFxERCThOmyDvpmVAp+3cvOewJoEhpNoim/3KL7dl+4xKr7WG+zuvXa2UodNLrvDzGa25GqJqCi+3aP4dl+6x6j4kk/VYiIiknBKLiIiknBKLq1zX9QB7ITi2z2Kb/ele4yKL8nU5iIiIgmnkouIiCSckouIiCSckkszzOxrZjbPzBrMrLjJsuvNbKGZfWRmpzSzfXcze9HMPgmfuyUx1klmNjt8fGZms5tZ7zMzmxuul7JeO83sZjNbFhPjqc2sNyY8pgvN7McpjO92M1tgZnPM7Gkz69rMeik9fjs7Hha4O1w+x8wOSnZMMfseaGavmNmH4f/JtXHWOc7MNsR87zelKr5w/zv8viI+fvvEHJfZZrbRzL7bZJ1Ij99uc3c94jyAfYF9gFeB4pj5I4D3gVxgKPApkBln+18BPw6nfwzclqK47wBuambZZ0DPCI7lzcAPdrJOZngshwE54TEekaL4TgaywunbmvuuUnn8WnI8gFMJhp4w4DDg7RR+p32Bg8LpTsDHceI7Dng21X9vLf2+ojx+cb7rlQQ3J6bN8dvdh0ouzXD3D939oziLxgET3b3a3RcDC4HRzaz3cDj9MPDV5ES6VTiQ2jnA48neVxKMBha6+yJ3rwEmEhzDpHP3F9y9Lnz5FtuOehqVlhyPccAjHngL6GpmfVMRnLuvcPd3w+lNwIdA/1TsO4EiO35NnAB86u6t7TEkLSm57Lr+wNKY1yXE/6faw4MRNAmfe6cgtqOBVe7+STPLHXjBzGaZ2RUpiCfW1WHVw4PNVBG29Lgm26VsHYiuqVQev5Ycj7Q4ZmY2BDgQeDvO4sPN7H0ze97MRqY0sJ1/X2lx/AgGOGzuhDDK47dbIhmJMl2Y2UtAnziLbnD3yXHmQ1CEbirp13O3MNbz2HGp5Uh3X25mvYEXzWyBu09PdnzAvcAtBMfpFoKqu0ubvkWcbRN2XFty/MzsBoIRUP/WzNsk7fjF0ZLjEcnf4jYBmBUBTwLfdfeNTRa/S1DVUx62sz1DMHR5quzs+0qH45cDnA5cH2dx1Mdvt3To5OLuJ7ZisxJgYMzrAcDyOOutMrO+7r4iLGqvbk2MjXYWq5llAWcCB+/gPZaHz6vN7GmCqpeE/Di29Fia2Z+BZ+MsaulxbZUWHL+LgNOAEzys8I7zHkk7fnG05Hgk9ZjtjJllEySWv7n7U02XxyYbd59qZn8ws57unpIOGVvwfUV6/EJjgXfdfVXTBVEfv92larFdNwUYb2a5ZjaU4EzinWbWuyicvghoriSUKCcCC9y9JN5CMys0s06N0wSN2B8kOabGfcfWY5/RzH5nAHub2dDwbG48wTFMRXxjgB8Bp7v75mbWSfXxa8nxmAJcGF71dBiwobEqNtnC9r0HgA/d/c5m1ukTroeZjSb4vVmbovha8n1FdvxiNFvbEOXxS4ioryhI1wfBj2AJUA2sAqbFLLuB4Eqej4CxMfPvJ7yyDOgB/Bv4JHzunuR4/wJc1WReP2BqOD2M4Iqj94F5BNVBqTqWjwJzgTkE/9B9m8YXvj6V4KqjT1Mc30KCuvfZ4eOP6XD84h0P4KrG75mgWuf34fK5xFzVmILYjiKoQpoTc9xObRLf1eGxep/gQokjUhhf3O8rXY5fuP8CgmTRJWZeWhy/RDzU/YuIiCScqsVERCThlFxERCThlFxERCThlFxERCThlFxERCThlFxE2hgz+2/UMYjsjC5FFhGRhFPJRSRJzOyQsLPOvPCO8Xlmtl+c9Z4JO1ec19jBopkNtmAsoJ5mlmFm/zGzk8Nl5eFzXzObHo718YGZHZ3aTyjSPJVcRJLIzH4G5AH5QIm7/yLOOt3dvczM8gm6fTnW3dea2eXAGILehvdy9yvD9cvdvcjMvg/kufutZpYJFHjQ/b1I5JRcRJIo7BdsBlBF0H1HfZx1bibobghgCHCKB+OLYGbTgL2AUY2JIya5HAM8CPwVeMbd445AKhIFVYuJJFd3oIhgtMa8pgvN7DiCTkcPd/cDgPca1zOzArYOXFbUdFsPuo8/BlgGPGpmFyYhfpFWUXIRSa77gP8lGCPmtjjLuwDr3H2zmX2BYLjdRreF290E/LnphmY2GFjt7n8m6KE4ZWPAi+xMhx7PRSSZwpJEnbs/FraJ/NfMvuTuL8es9i/gKjObQ9DLdmN12LHAIQQDXtWb2Vlmdom7PxSz7XHAD82sFigHVHKRtKE2FxERSThVi4mISMIpuYiISMIpuYiISMIpuYiISMIpuYiISMIpuYiISMIpuYiISML9f33tHalPHMycAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x = np.arange(-10, 10)\n", "y1 = x**2\n", "y2 = x**3\n", "\n", "# Plot multiple functions\n", "plt.plot(x, y1)\n", "plt.plot(x, y2)\n", "plt.xlabel('x axis')\n", "plt.ylabel('y axis')\n", "plt.title('introduction to matplotlib')\n", "plt.legend(['x^2', 'x^3'])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 5, "id": "35a5048ed5ae0350", "metadata": { "ExecuteTime": { "end_time": "2024-09-23T05:05:16.961457Z", "start_time": "2024-09-23T05:05:16.864066Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VfW56P/PkxlCEkhIIANDgBCQMEfAecJCtUdaW6312HpaPfa02vG0PXp77689v1Pbnt7a6VrbattTbZ1Rj9xqVUaHqkACEYKEOSMh8wSZs5/7x16hKYYp2XuvPTzv12u/9t5rr7X3Q/LdD98867u+X1FVjDHGRI4otwMwxhgTWJb4jTEmwljiN8aYCGOJ3xhjIowlfmOMiTCW+I0xJsJY4g8hIvJxEfmmiMS4HYsxvmRtO7As8YcIEfkk8FvgH4Hfi4ic8vqPReSAiHSISJmIfMaVQI05T+fQtn8kIlUi0i4iFSLybVcCDSOW+EOAiKwEfgZcC1wOzAB+dMpuJ4B/AFKA24Gfi8jFgYzTmPN1jm37d8AcVU0GLgZuFZEbAxpomLHEHwREZKaINIvIEud5log0isiVIlII/AZYpapFqtoOrAKWiMg3Bt9DVb+jqmWq6lHVrcCbwEVu/HuMGeSjtr1PVU8MeVsPMCuQ/45wIzZlQ3AQkX8Gvg4sBV4AdqvqN8581GnfawxwGPisqr7iuyiNOX++aNsici/wP4FE4AhwuapW+zrWSGGJP4iIyDogF1DgQlXtGeH7PApMAj6s9gs2QcAXbdup/S8CPgr8WFU7fBtl5LBST3B5BCgA/s8okv7/dt7jZkv6JoiMum2r106gC/h3XwYXaSzxBwkRGYf3JNfvgO+KSOoI3uPfgQ8DH3Lqpca4zhdt+xQxwMxRBxbBLPEHj58Dxap6J/AS8OvzOVhE7gNuBa5V1SY/xGfMSI24bYtIlIh8XkQmiNcy4G5go59ijQhW4w8CIrIGeAiYr6rNTg+pBPiOqj5+ju+hQC/QN2Tz91X1+z4P2JhzNNq2LSJRwMvAMiAOOAr8AfiBlTJHzhK/McZEGCv1GGNMhLHEb4wxEcYSvzHGRBhL/MYYE2GCYgrUiRMn6vTp090Ow4Sx4uLiRlVND/TnWts2/jTSdh0UiX/69OkUFRW5HYYJYyJS4cbnWts2/jTSdm2lHmOMiTCW+I0xJsJY4jfGmAhjid9ELBHJF5GSIbd2EfmqiHxXRGqGbL9uyDH3ichBEdknIqvcjN+YkQqKk7vGuEFV9+Gd3x0RiQZq8C4U8lngp6r646H7i8gFwC3APCAL2CAis1V1IKCBGzNKZ+3xi8jvRaReREqHbEsVkfXO4t7rRWTCkNesR2RC0TXAIVU90yiJNcBTqtqjqkeAg3gnDzMmpJxLqecPwOpTtt0LbFTVPLzTo94LH+gRrQYecnpSxgS7W4Anhzy/R0R2OR2fwY5NNlA1ZJ9qZ9vfEZG7RKRIRIoaGhr8F7ExI3TWxK+qbwDNp2xeAzzqPH4U71Jog9t91iN6+1AjP1m/f6SHG3NORCQOuAF41tn0K7wLfSwCaoEHBncd5vAPTG+rqg+raqGqFqanB/yaMRNG3jrQyG9eP0R3n2+riSM9uTtJVWsBnPsMZ/s59Yjg3HpFOytb+cXGA7R19Q37ujE+8mFgh6rWAahqnaoOqKoH75KBg52XamDKkONy8M4Pb4xfPF1UxSNvHiEu2rfjcHw9quecekRwbr2ieVnJALx/1FYRNH71KYaUeUQkc8hrHwMGz2+tA24RkXgRyQXygG0Bi9JElP4BD6/vq+eq/HSiooZLrSM30sRfN/jlcO7rne0+7RHNy0oBYM/RtpG+hTFnJCJjgWuB54ds/pGI7BaRXcBVwNcAVHUP8AzwPvAKcLeN6DH+sqOylfbufq6ek3H2nc/TSIdzrgNuB37o3L84ZPsTIvITvMPdRtUjSk+KZ1JyPHusx2/8RFU7gbRTtn36DPvfD9zv77iM2VhWR2y0cGneRJ+/91kTv4g8CVwJTBSRauA7eBP+MyJyB1AJ3ATeHpGIDPaI+vFBj6ggK4XSGuvxG2Miy+ayei6cnkpSQqzP3/usiV9VP3Wal645zf4+7RHNy05h8756unoHGBNnI0ONMeGvuqWT/XXHublwytl3HoGgn7JhXlYyHoW9x6zcY4yJDJvLvKdNr/JDfR9CIPEXZA+e4LXEb4yJDJvK6pmeNpYZExP98v5Bn/izUhKYMDaWPVbnN8ZEgK7eAd4+1MRVczIQ8e0wzkFBn/hFhHlZKZTakE5jTAR453AjPf0evwzjHBT0iR9gXnYy+48dp7ff43YoxhjjV5vK6hkbF82y3FS/fUZoJP6sFHoHPByo73A7FGOM8RtVZdPeei6dNZH4GP+NYgyJxF/gTN2wp8ZO8Bpjwte+ug6OtnX7tcwDIZL4p6clkhgXbVM3GGPC2iY/D+McFBKJPypKuCArmVIb0mmMCWOby+qZl5XMpOQEv35OSCR+8Nb599a2M+AZdrJPY4wJaa2dvRRXtHCNn3v7EEKJvyA7hc7eAY40nnA7FGOM8bnX9zfgUf+XeSCEEv/g3PxW5zfGhKPNZfWkJcaxMGe83z8rZBL/rIxxxMVE2dQNxpiwM+BRtuxv4Ao/LLoynJBJ/LHRUcydnGRTNBtjws7OyhZaO/v8PoxzUMgkfoALnLn5Ve0ErzEmfGwqqyc6Srgsb/hlaH0tpBJ/QXYy7d39VLd0uR2KMcb4zKayegqnTSBljO8XXRlOSCV+W4PXGBNujrZ2UXasg2vmBqbMAyGW+OdMTiI6SuwEr/EZESl3FlYvEZEiZ1uqiKwXkQPO/YQh+98nIgdFZJ+IrHIvchMuNu/zXq0bqPo+hFjiT4iNJi9jnJ3gNb52laouUtVC5/m9wEZVzQM2Os8RkQuAW4B5wGrgIRGx9UDNqGwuq2dK6hhmpo8L2GeGVOIHbOoGEwhrgEedx48CHx2y/SlV7VHVI8BBYJkL8Zkw0XKilzf2N/KhCyb7bdGV4YRc4i/ISqGho4f69m63QzHhQYHXRKRYRO5ytk1S1VoA537wb/BsoGrIsdXOtr8jIneJSJGIFDU0NPgxdBPq1r13lN4BD59YmhPQz40J6Kf5wNA1eDP8PJGRiQiXqOpREckA1otI2Rn2Ha5L9oGxxar6MPAwQGFhoY09Nqf1bHEVBdnJzM1MDujnhlyPf25mEoDV+Y1PqOpR574eeAFv6aZORDIBnPt6Z/dqYMqQw3OAo4GL1oSTvbXtlNa084klge3tQwgm/qSEWHInJtrIHjNqIpIoIkmDj4EPAaXAOuB2Z7fbgRedx+uAW0QkXkRygTxgW2CjNuFibXE1sdHCDYs+UC30u5Ar9YD3BO97Va1uh2FC3yTgBeekWgzwhKq+IiLbgWdE5A6gErgJQFX3iMgzwPtAP3C3qg64E7oJZX0DHv57Zw0r504iNTEu4J8fkom/ICuFl3bV0tbZR8rYwFzpZsKPqh4GFg6zvQm45jTH3A/c7+fQTJjbXFZP04negJ/UHRRypR7wTt0AdgWvMSY0rS2uZuK4eK6YHZi5eU4Vkol/cOqGUkv8xpgQ03i8h01l9dy4JJuYaHdScEgm/tTEOLJSEuwErzEm5LxYcpR+j7pW5oEQTfwA87JTbEinMSbkrC2uZmFOCrMnJbkWQ+gm/qxkDjee4ERPv9uhGJepKn0DHrfDMOasSmva2FvbzicKp5x9Zz8aVeIXka+JyB4RKRWRJ0Uk4UwzG/pSQVYKqt6LIExkq23rZt53XuWlXbVuh2LMGa0triYuOoobFmS5GseIE7+IZANfBgpVtQCIxjtz4bAzG/raghzvCd4SG88f8XZWttLb72FK6hi3QzHmtHr7PbxYUsO18ya5Pgx9tKWeGGCMiMQAY/Fevn66mQ19KiM5gezxYyzxG0qqWoiLiWLO5MDOd2LM+dhUVkdLZx83uXhSd9CIE7+q1gA/xntlYy3QpqqvcfqZDf+OL2YwXDR1PDsrLfFHup2VrczPTiEuJmRPWZkI8GxRNZOS4wO2ru6ZjKbUMwFv7z4XyAISReS2cz1eVR9W1UJVLUxPH9kPYvGU8dS0dlHfYVM0R6q+AQ+7a9pYNGW826EYc1r1Hd1s2d/AjUtyiI4K3Lz7pzOaLtJK4IiqNqhqH/A8cDGnn9nQ5wa/7CXW649YZbUd9PR7WDzVEr8JXv+9s4YBl8fuDzWaxF8JrBCRseKd5eoaYC+nn9nQ5wqyU4iJEqvzR7CSqhYA6/GboKWqrC2uZsnU8QFdXvFMRjxJm6puFZG1wA68MxXuxLv4xDiGmdnQHxJio5mbmWx1/gi2s7KV9KR4ssfbiB4TnN451MT+uuP84Mb5body0qhm51TV7wDfOWVzD6eZ2dAfFk8dz3PF1Qx4NChqZyawSqpaWTRlfEDXKzXmXKkqP92wn8nJCXxsceDn3T+dkB8GsWjKeE70DnCgvsPtUEyAtXb2crjxhNX3TdB6+1AT28tb+OJVM0mIjXY7nJNCPvEvnuq9MNhO8EaewXM7Vt83wUhV+ZnT27/Z5SkaThXyiX962ljGj421E7wRaGdlKyKwIMcSvwk+fz3o7e3fHWS9fQiDxC8iLJpiF3JFopKqVvInJTEuPiQXkjNhbLC3n5mSwM0XBldvH8Ig8YP3T/399R0ct5k6I4aqnjyxa0yweetgI0UVLXzxqlnExwRXbx/CJPEvnjoBVdhl5Z6IcaTxBG1dfXZi1wQdb2//gLe3XxgcF2ydKiwS/yKnxrvTEn/E+NuJ3ZHP+i0iU0Rks4jsdaYX/4qz/bsiUiMiJc7tuiHH3CciB0Vkn4isGu2/w4Sftw42UhzEvX0Y5Tj+YJEyNpYZ6YlW548gOytbGRcfw6yMUV0J2Q/8q6ruEJEkoFhE1juv/VRVfzx0ZxG5AO/U4/Pwzk+1QURmq+rAaIIw4UNV+en6/WQFcW8fwqTHD946f0lVK6rqdigmAEqqWlmQkzKqi/ZUtVZVdziPO/BOOXKmq2zWAE+pao+qHgEOAstGHIAJO28eaGRHZWtQ9/YhjBL/4qkTaDzeQ3VLl9uhGD/r7htgb227T+v7IjIdWAxsdTbdIyK7ROT3Q1aRywaqhhxWzTD/UfhiynETegav0s1KSeCmIO7tQzgl/sGZOq3OH/ZKa9ro9+io6vtDicg44Dngq6raDvwKmAkswrvWxAODuw5z+Af+xPTFlOMm9LxxoJGdla3cfXVw9/YhjBJ//uQkEmKjrM4fAQZ/x74YyikisXiT/uOq+jyAqtap6oCqeoBH+Fs5pxoYOig7B++qcybCDY7bzx4/hpuWBt+4/VOFTeKPjY5ifnbKyWl6TfgqqWolZ8IY0pPiR/U+znTivwP2qupPhmzPHLLbx4BS5/E64BYRiReRXCAP2DaqIExY2LC33tvbv2pWSKwEFxajegYtmjKeR9+poLffExI/fDMyOytbWDo91RdvdQnwaWC3iJQ42/4H8CkRWYS3jFMOfB5AVfeIyDPA+3hHBN1tI3pM84le/scLu8mflBQ0C62cTVgl/sVTJ/DIm0fYW9vOQruiMyzVtXdztK2bO3zw+1XVtxi+bv/yGY65H7h/1B9uwoKqct/zu2jr7OOxzy0LmQ5naER5jgZrvjsrrdwTrnxZ3zdmtJ4trubVPXV8Y9Vs5mYmux3OOQurxJ+ZksCk5Hgb2RPGSqpaiY0W5mWFzpfMhKfKpk7+fd0eVsxI5c5LZ7gdznkJq8R/cqZOS/xha2dlCxdkJgfdNLcmsgx4lK8/U0JUlPDAzYuICrHV/8Iq8YO3zl/R1EnziV63QzE+NuBRdte0nVx8xxi3/Pr1QxRVtPC9jxaE5HrPYZf4B2u/71mvP+zsr+ugs3fA6vvGVbur2/jp+v38w8Is1iwKnnV0z0fYJf4FOSlEiZ3gDUeDJ3ZtKmbjlq7eAb769E7Sk+L53poCt8MZsbAazgkwNi6G/MnJVucPQyVVLaQmxjE1dazboZgI9YO/7OVQwwkev3M5KWNj3Q5nxMKuxw/eHmFJVSsej83UGU52VnpX3PJecGtMYG3eV89j71Rwx6W5XDJrotvhjEpYJv5FU8bT0d3P4cYTbodifKS9u4+DDcetvm9c8deDjXzxTzuYMzmJb67KdzucUQvLxL9kql3IFW52VbWhavV9E3ibyur47B+2MzV1LH+8Y3lYDCUOy8Q/Y+I4khJi2GGJP2zsqGxBBBbkWOI3gfPy7lo+/8di5kxO4qm7Vox6YsBgEZaJPypKuHB6KluPNLsdivGRrUeamDM5mZQxoXtCzYSW53dUc88TO1iYM54/3bmcCYlxbofkM2GZ+AGW56ZyuOEE9R3dbodiRqm330NxRQvLc30yI6cxZ/X41gr+9dn3uGhmGo/dsYzkhPDqcIRv4p+RBsA26/WHvN01rXT3eVgxwxK/8b/fvnmYb79QylX5Gfzu9gsZGxd2o97DN/EXZCWTGBfN1sOW+EPdu87vcFlumsuRmHDWP+DhJ+v3872X9nLd/Mn8+ralYXEidzij+q9MRMYDvwUK8C5a8TlgH/A0MB3vIhY3q2rAz7LGREexdHoqW480BfqjjY9tPdLM7EnjSA2jGqsJLm8daOT///Me9tcd58Yl2fzo4wuIiQ7bfvGoe/w/B15R1TnAQmAvcC+wUVXzgI3Oc1csz01lf91xm7AthPUPeCgub2a59faNH1Q2dXLXY0Xc9rutdPUN8JtPL+WBmxaGddKHUfT4RSQZuBz4JwBV7QV6RWQNcKWz26PAFuDfRhPkSA3WhLcdaWJ1QeZZ9jbBqPRoOyd6B1hu9X3jQyd6+nloy0EeefMIMVHCN1flc8eluWFb2jnVaEo9M4AG4L9EZCFQDHwFmKSqtQCqWisiGcMdLCJ3AXcBTJ06dRRhnN787PEkxEax9UizJf4Qtc0p1S2zET3GB7r7Bnh5dy3/+UoZde093Lg4m2+tnsPklAS3Qwuo0ST+GGAJ8CVV3SoiP+c8yjqq+jDwMEBhYaFfJtWJi4liydQJdoI3hG093MyMiYlkJAXHF1NEVuMtcUYDv1XVH7ockjmL+o5utpQ1sGFvHW8dbKSzd4CFOSk89I9LWTotMtd2GE3irwaqVXWr83wt3sRfJyKZTm8/E6gfbZCjsTw3jZ9t3E9bZ19Iz6YXiQY8yrbyZj6yIDj+WhORaOCXwLV42/92EVmnqu+7G5kZqn/Aw766DjburWdjWf3JtTmyUhK4cUk218ydxBV56SG3apYvjTjxq+oxEakSkXxV3QdcA7zv3G4Hfujcv+iTSEdo+YxUdANsL29m5QWT3AzFnKe9te10dPcH04ndZcBBVT0MICJPAWvwtnlznlSVzt4B+geUfo+HAY/S79Eh9x76PUr/gJ7ymnff1s4+jrV1U9vWTW1bF7Vt3Rxr66a+oxuPgggszBnPNz40m6vnTGJuZpLN7OoY7ZUJXwIeF5E44DDwWbwjhZ4RkTuASuCmUX7GqCyaMp64mCi2HmmyxB9iBqfcCKITu9lA1ZDn1cByl2IJCXXt3ZTWtJ1MyrVt3Rxr76K21fu4q29g1J+RGBdN5vgxZKYkkJcxkcyUBKalJXL57PSwmVvH10aV+FW1BCgc5qVrRvO+vpQQG82iKeNt3p4QtPVwE1NTx5KZEjRrmg7XXfzA+alADFwIVh6PUnq0jQ1769lUVkdpTfvJ16KjhElJ8UxOSWBuZjJXzckgPSmeuOgoYqKF6CghJkqIjooiJkqIihJio5zt0X/bPrhf8phYMlMSSAqz6RQCIfyuRR7GitxUHtx8kI7uPmskIcLj1PevnRtUf6VVA1OGPM8Bjp66UyAGLgSTzt5+3jrQyMa99WzaV09DRw9RAkumTuBbq/NZnptG9vgxTBwXF/bj40NFRCT+5TPS+MWmgxRVtHBV/rCjS02Q2V/fQWtn38k5l4LEdiBPRHKBGuAW4FZ3Q3JP/4CHx7dW8pP1+2nr6iMpPobL89NZOTeDK2Zn2JXWQSwiEv/iqeOJiRK2Hm62xB8iBofgBtOMnKraLyL3AK/iHc75e1Xd43JYrvjrwUb+/f96pzi4ZFYaX7xyFstyU4m1Hn1IiIjEPzYuhgU5KScvBjLBb9uRZrJSEsiZEDT1fQBU9WXgZbfjcEtVcyffe+l9Xt1Tx5TUMfzm00v50AWTbLRMiImIxA/ecs8jbxyms7c/LKdZDSeqytYjTVyWl24JJUhE+hQH4SZiMuDy3FR+teUQOypauTRvotvhmDM41HCCxuO9QVXmiWSlNW3c+WgRx9q7+djibP4tAqc4CDcRk/gLp6cSHSVsPdJkiT/IDU6lHWQndiNScUUL//Rf20hOiOW5L1zE0mn2n3E4iJjEPy4+hoKsZJu3JwRsPdxMRlI809PGuh1KRHv7UCN3PlpERlI8j//zCrLHB9f5FjNyEXUKfvmMNEqqWun2wdWCxj8G6/vLZ6RZfd9FW/bV89n/2k72+DE88/mLLOmHmchK/Lmp9A542FnZ6nYo5jQqmjqpa++x+r6LXik9xj8/VsSsjHE8/fmLyEi2en64iajEXzg9FRFsOcYgNvi7sYXV3fFiSQ13P7GD+dkpPPHPK+wirDAVMTV+gJQxscydbHX+YLb1cDNpiXHMTB/ndigR56ltldz3wm6W56byu9svJDE+otJDRImoHj94Z3rcUdlCb7/H7VDMMLYeaWZZbqrV9wPs+R3V3Pv8bi7PS+cPn11mST/MRV7iz02jp9/Drmqr8web6pZOalq7rL4fYBVNJ/if/13K8txUHv7MUrsoKwJEXOIfXLvVpmkOPifn57Hx+wHTP+Dha0+XEB0l/PSTi4iPsaQfCSIu8acmxpE/KYl3D9sJ3mCz9UgT48fGkj8pye1QIsZDWw6xo7KV7320gCwbshkxIi7xA1w0M43t5c02nj+IqCpvHWhkeW5qRK+FGkjvVbXy840HuGFhFmsWZbsdjgmgiEz8V+Sn093nsXJPEDlQf5yjbd1cadNmB0Rnbz9fe7qEjKR4/mNNgdvhmACLyMS/IjeNuJgoXt/X4HYoxjH4u7hidrrLkUSG77+8l8ONJ3jgpoWkjLVV6SJNRCb+MXHRrJiRxpb99W6HYhxb9tcze9I4qzMHwOayev70biV3XprLxbNswsJIFJGJH7w9y8MNJ6hq7nQ7lIh3oqef7UdarLcfAE3He/jm2l3MmZzEN1blux2OcUnEJv4r871JZst+K/e47Z1DTfQOeKy+72eqyr3P76a9q4+ffnKRjdePYBGb+GdMTGRK6hir8weB1/c3MDYumsLpE9wOJaw9W1TN+vfr+OaqfOZmJrsdjnFRxCZ+EeGK2em8faiRnn4b1ukWVWXL/nounplmFw/50Ymefn7wl70sy03ljktz3Q7HuCxiEz/AlbMz6OwdoLi8xe1QItaRxhNUNXdxRYDLPCLyv0WkTER2icgLIjLe2T5dRLpEpMS5/XrIMUtFZLeIHBSRX0gITSj02DsVtHT2ce+H59h1EiayE/9FM9OIi46yOr+LtjiltisDf2J3PVCgqguA/cB9Q147pKqLnNu/DNn+K+AuIM+5rQ5YtKNwvKefh984xBWz01ky1cppJsITf2J8DBfmTrA6v4te39/AjPREpqQGdplFVX1NVfudp+8COWfaX0QygWRVfUdVFXgM+Kifw/SJx94pp6Wzj6+uzHM7FBMkIjrxg3dY5766Do62drkdSsTp7hvg3cNNwTCM83PAX4Y8zxWRnSLyuohc5mzLBqqH7FPtbPsAEblLRIpEpKihwd1OxfGefh554zBX5qez2Hr7xhHxiX9wCOEbVu4JuHcPN9HT779hnCtXrqSgoICCggKAeSJS6tzWDO4jIt8G+oHHnU21wFRVXQx8HXhCRJKB4QrjOtznqurDqlqoqoXp6e7+p/bo24O9/dmuxmGCS8SvtpCXMY7MlAS27GvglmVT3Q4nomzZ10B8TJTf5t/fsGHDycciskdVC4e+LiK3Ax8BrnHKN6hqD9DjPC4WkUPAbLw9/KHloBzgqF8C95HjPf088uZhrspPZ9GU8W6HY4JIxPf4RYQr89P568FG+gZsVa5Aen1/AxfNTHPlQiIRWQ38G3CDqnYO2Z4uItHO4xl4T+IeVtVaoENEVjijeT4DvBjwwM/Do2+X09rZx1est29OMerELyLRTj30z87zVBFZLyIHnPugLyxeMTudjp5+dlTYsM5AqWg6wZHGE27W9x8EkoD1pwzbvBzYJSLvAWuBf1HVwWlcvwD8FjgIHOLvzwsElY7uPh558zBXz8mw3r75AF+Uer4C7AUGLwW8F9ioqj8UkXud5//mg8/xm4tnTSQmStiyv8FWfwqQ151zKm5N06Cqs06z/TngudO8VgSExBzGj71T4e3tX2MjecwHjarHLyI5wPV4e0GD1gCPOo8fJQSGvCUnxLJkmg3rDKTX9zUwNXUs09MCO4wzEgzt7S+03r4ZxmhLPT8DvgUMLY5PcuqhOPfDdumCacgbeCdte7+2nfr2brdDCXvdfQO8faiJK/PTCaGLX0PGYG3fxu2b0xlx4heRjwD1qlo8kuODacgb/G0BkNdtWKffFZW30NU3EAzj98OOt7d/hGvmZLAgx3r7Znij6fFfAtwgIuXAU8DVIvInoM65ynHwaseQWO3kgsxkMpLibfqGANiyr5646CgummnnU3zt0bfLaevq4yvW2zdnMOLEr6r3qWqOqk4HbgE2qeptwDrgdme32wnyIW+DBmfrfOtAI/02rNOvXt/fwPIZqYyNi/jLSHyqq3eAR948wsq51ts3Z+aPcfw/BK4VkQPAtc7zkHBFfjptXX28V93qdihhq6a1iwP1x63M4wev7KmlrauPOy+b4XYoJsj5pMulqluALc7jJuAaX7xvoF02K50o8Y44WTrNP1eTRrrBkVODK6AZ33m2qJqpqWNZNt3arjmziL9yd6iUsbEsnjrB6vx+tGVfPdnjxzAzfZzboYSV6pZO3j7UxMeX5Nh8++asLPGf4srZ6eyqbqOho8ftUMJOT793GOfls20Yp689V1wDwMeXDjthqDF/xxL/Ka6dNwmOE2ffAAAWJklEQVSAV/YcczmS8PPm/kaO9/TzIednbHzD41HW7qji4plp5EywC+LM2VniP0X+pCRmpify8q5at0MJOy/vriVlTCyXzJzodihhZVt5M1XNXdxUeMa1ZIw5yRL/KUSE6xdksfVIE/UddhWvr3T3DbD+/TpWzZtEXIw1O19aW1zNuPgYVs/LdDsUEyLsGziM6+dn4lF4tdTKPb7y5oFGOnr6uW6+JSdfOtHTz8u7a/nIgkzGxAV+emsTmizxD2P2pHHMyhjHS7ut3OMrJ8s8s6zM40sv766ls3eATyy1Mo85d5b4hyEiXD8/k61Hmq3c4wODZZ7V8yYTG21NzpeeLa4md2IiS6cF/bIXJojYt/A0rl+QiSq8YuWeUXtjfwPHe/q5foGVeXypoukE244084mlOTY81pwXS/ynMXtSEnkZ43jJRveM2su7axk/NtYmZfOx54qrEYEbl9jYfXN+LPGfwfULMtlW3mxz9I+ClXn8w+NRnttRw6WzJpKZMsbtcEyIsW/iGVw/31vu+YuVe0bs9f0NnOgdsDKPj71zuIma1i5uKpzidigmBFniP4O8SUnMnmTlntF4aVctE8bGcpGtZexTa4urSUqI4UMX2FXQ5vxZ4j+L6+dnsb2imTor95y37r4BNu6tY3XBZGKCrMwjIt8VkRoRKXFu1w157T4ROSgi+0Rk1ZDtS0Vkt/PaL8SlM6rt3X38pbSWGxZmkRBrY/fN+Quub2MQun7BZG+5x8b0n7ct+5wyz/wst0M5nZ+q6iLn9jKAiFyAd2GhecBq4CERGcyuvwLuAvKc22oXYublXbV093ls7L4ZMUv8ZzErI4k5k5PsYq4ReGl3LamJcayYEVLzw68BnlLVHlU9AhwEljnLiCar6juqqsBjwEfdCPDZ4mpmpieyaIqtsmVGxhL/ObhufiZFFS0ca7Nyz7kaLPOsmhd8ZZ4h7hGRXSLyexEZvAIqG6gask+1sy3beXzq9g8QkbtEpEhEihoafLu2w+GG4xRXtHBT4RQbu29GLGi/kcHkupOje6zXf6627Kuns3eAj7g4mmflypUUFBRQUFAAME9ESp3bGrxlm5nAIqAWeMA5bLhsqmfY/sGNqg+raqGqFqan+3alscERZmsWBW35zIQAW+36HMzKGOct9+yq5bOX5LodTkj4865a0hLjWJ7rXplnw4YNJx+LyB5VLRxuPxF5BPiz87QaGDpGMgc46mzPGWZ7QG0uq6cgO9nG7ptRsR7/Obreyj3nrKt3gE1l9awKwtE8g5ya/aCPAaXO43XALSISLyK5eE/iblPVWqBDRFY4o3k+A7wYyJhbTvSyo7KFq/MzAvmxJgwF57cyCF3nlCxetpO8Z3WyzBPcUzD/yBmauQu4CvgagKruAZ4B3gdeAe5W1QHnmC8Av8V7wvcQ8JdABvzGgQY8ClfNscRvRsdKPedoZvo45mYm89LuWj53qZV7zuTPu2uZOC6OZS6Wec5GVT99htfuB+4fZnsRUODPuM5kU1k9aYlxLMyx0TxmdKzHfx4+siCT4ooWatu63A4laHX1DrBpb31QXrQVyvoHPGzZ18AV+elERdloHjM69s08D4OrR71YEvBzeiHjtfeP0dU3YCtt+djOqlbauvq42so8xgcs8Z+H3ImJLMtN5cltlXg8w47ki3iPv1vJtLSxrMi1uXl8aVNZPdFRwmV5vh0eaiKTJf7zdNuKaVQ0dfLmwUa3Qwk6+451sK28mX9cPtXKET62uayeC6dPIGVMrNuhmDBgif88rZo3ibTEOP70boXboQSdx7dWEBcTxSeW2lTBvlTT2kXZsQ4r8xifscR/nuJjorn5wils3FvH0VY7yTvoRE8/z++o4fr5maQmxrkdTljZXFYPYInf+Iwl/hG4ddlUFHhqe9VZ940U6947yvGefm5bMdXtUMLO5rJ6pqSOYWb6OLdDMWHCEv8ITEkdy5Wz03lqWyV9Ax63w3GdqvKndyuYMzmJJVMnnP0Ac866+wb466FGrs7PsEnZjM+MOPGLyBQR2Swie0Vkj4h8xdmeKiLrReSAcx+WmeC2FdOo7+hhw/t1bofiupKqVvYcbee2FdMsOfnYO4eb6O7z2NW6xqdG0+PvB/5VVecCK4C7nUUs7gU2qmoesNF5HnauzM8ge/wY/rTVTvL+6d1KEuOi+ejiYWcpNqOwaW89Y2KjWWFLVxofGnHiV9VaVd3hPO4A9uKdn3wN8Kiz26O4tFiFv0VHCZ9aNoW/HmzicMNxt8NxTWtnL3/edZSPLs5mXLzNAOJLqsqmsnoumTXRllg0PuWTGr+ITAcWA1uBSc5Mhjj3w/6N6s/FKgLl5gunEBMlPL610u1QXLO2uJqefg+3rZjmdihh50D9cWpau2w0j/G5USd+ERkHPAd8VVXbz/U4fy5WESgZSQmsKpjM2uJquvsGzn5AmFFVHt9aydJpE5ibmex2OGFnkzOM86o5ofn9MMFrVIlfRGLxJv3HVfV5Z3Pd4Fznzn396EIMbrctn0ZbVx9/3hV50zW/faiJI40nbAinn2wqq2dupi26YnxvNKN6BPgdsFdVfzLkpXXA7c7j2wnwYhWBtmJGKjPTEyPySt4/vVvBhLGxfLjAJmTztbbOPoorWrjaevvGD0bT478E+DRwtYiUOLfrgB8C14rIAeBa53nYEhH+cfk0SqpaKa1pczucgKlr7+a19+u4qXCKnXj0gzcONDDgUavvG78Yzaiet1RVVHWBqi5ybi+rapOqXqOqec59sy8DDkYfX5pDQmwUj0fQ0M6ntlUx4FFuXWZlHn/YXFbPhLGxLJoSlpfBGJfZlbs+kDImlhsWZvHfO4/S3t3ndjh+1z/g4cltlVyWN5HpExPdDifsDHiUzfvquTI/g2ib5dT4gSV+H7ltxTS6+gZ4YUeN26H43aayeo61d9sQTj8pqWqlpbPPrtY1fmOJ30cW5IxnYU4Kv33rML394Tt/j6ry0JZDZKUkcE0IJyYReXrIualyESlxtk8Xka4hr/16yDFLnQXaD4rIL8RP81Ns2edddOUKW3TF+Iklfh/66rWzqWru4qnt4XtB1/r36yipauVL1+SF9Jq6qvrJwXNTeIckPz/k5UNDzlv9y5DtvwLuAvKc22p/xPbu4SbmZ6eQMtYWXTH+Ebrf3CB05ex0lk1P5RcbD9LZ2+92OD434FEeeG0/uRMTuWlpjtvh+ITTa78ZePIs+2UCyar6jqoq8Bh+mI6ku2+A96raWJab6uu3NuYkS/w+JCJ8c3U+jcd7+MPb5W6H43Pr3qthX10HX792dkj39k9xGVCnqgeGbMsVkZ0i8rqIXOZsywaqh+xT7Wz7gNFMR7K7po3eAQ+F02w0j/GfsPn2BosLp6dyVX46v95yiLbO8Bnh09vv4Sfr93NBZjLXzw+NC7ZWrlxJQUEBBQUFAPNEpNS5rRmy26f4+95+LTBVVRcDXweeEJFkYLh6vg73uaOZjmR7uXf0c+F06/Eb/7HE7wffWJVPe3c/v3njkNuh+MzT2yupau7im6vyQ2Yh9Q0bNlBaWkppaSnAHlUtcG4vAohIDHAj8PTgMarao6pNzuNi4BAwG28Pf2h9Kwc46uuYi8pbmJUxzpavNH5lid8P5mWl8A8Ls/ivv5ZT39Htdjij1tU7wC82HeTC6RO4Mj+sRpqsBMpU9WQJR0TSRSTaeTwD70ncw85Msx0issI5L/AZfDwdicejFJU3c+F0K/MY/7LE7ydfv3Y2vQMefrnpoNuhjNof3i6noaOHb66aE24rbN3CB0/qXg7sEpH3gLXAvwy5+vwLwG+Bg3j/EviLL4M5UH+c9u5+CqdZmcf4l62c4Se5ExO5uTCHJ7ZVcudlM5iSOtbtkEakrauPX79+iCvz08NupImq/tMw257DO7xzuP2LgAJ/xbPNqe9faPV942fW4/ejL1+Th4jwsw0Hzr5zkHrkjcO0dfXxjQ/lux1K2CsqbyYjKZ4pqTYNs/EvS/x+lJkyhtsvmsYLO6s5UNfhdjjnraGjh9//9QgfWZBJQXaK2+GEvaLyFi7MTQ23cpoJQpb4/ewLV85ibFwMP35tn9uhnLdfbj5IT7+Hr1872+1Qwl5Naxc1rV1caOP3TQBY4vez1MQ47rwsl1f3eKc6CBVVzZ08vrWCm5bmMCN9nNvhhL0iG79vAsgSfwDcedkMUhPj+NErZXiv9g9+P92wHxHhy9fkuR1KRCgqb2FcfAxzJie5HYqJAJb4A2BcfAxfXZnH24eaeOyd4F+s5ZXSYzy/o4bPXZJL1ng70RgI28ubWTx1fDhNhWGCmLWyAPn0imlcPSeD+1/ay56jwbtEY3VLJ99a+x7zs1Osth8gbZ197KvrsGGcJmAs8QeIiPDjmxYyITGWLz2xkxM9wTd7Z9+Ah688VYJH4cFbFxMXY80jEHZUtqBq4/dN4Ng3O4BSE+P4+S2LKW86wf96sdTtcD7gZxv2U1zRwvdvnM+0NFtSMVC2lzcTEyUsmjLe7VBMhLDEH2ArZqTxpavzeH5HDc8VV5/9gAB560AjD205xCcLp3DDwiy3w4koReUtFGSnMCYu2u1QTISwxO+CL1+Tx/LcVP7Xi6Ucajjudjg0dPTw1adLmJU+ju/eMM/tcCJKT/8AJdWtNjGbCShL/C6IjhJ+fsti4mOiuOeJnXT3DbgWi8ejfP2ZEjq6+3jw1iXW6wyw3dVt9PZ7bPy+CShL/C6ZnJLAAzcvZG9tO99/ea9rcfz6jUO8eaCR7/zDPPJtDHnAbS9vAbAVt0xAWeJ30dVzJnHnpbk89k4Fr5QeC/jnF1e08MBr+7l+QSafWjYl4J9vvFfszkxPJG1cvNuhmAhiid9l31o9hwU5KXxr7Xu8f7Q9YJ9b1dzJl5/cSdb4BH5w43ybGMwFHo9SVNFiwzhNwFnid1lcTBQPfmoJY+Ni+Piv3ualXbV+/8y3DzZyw4Nv0dHdxy9vXUJyQqzfP9N80IH647R19Vl93wScJf4gMDVtLOu+dAlzM5O4+4kdPPDaPjwe38/po6o8+nY5n/79NtLGxbPunktZkGNjx92y/eTCK1bfN4FliT9IZCQl8ORdK7i5MIf/s+kgd/2xmI7uPp+9f0//APc+t5vvrNvDVfnpvPDFi5k+0S7SclNReTPpSfFMDdHV2UzossQfROJjovnPjy/gu/9wAZv31XPjQ29T0XRi1O/b0NHDrY9s5emiKu65ahYPf7qQJCvvuG57eQvLptvCKybwLPEHGRHhny7J5Y+fW0bD8R5uePCvvHWgccTvt7u6jRsefIv3j7bz4K2L+caqfKKiLNG47aiz8EqhlXmMC/yW+EVktYjsE5GDInKvvz4nXF08ayLr7r6UyckJfOb3W/nykztZW1xNXXv3WY9tPtHL/33vKN9a+x6f+PXbRImw9gsX8ZEFkTUVw7PPPsu8efOIiooC+Lt6iojc57TNfSKyasj2pSKy23ntF+J0x0UkXkSedrZvFZHpo4mtqMI7ft9G9Bg3xPjjTUUkGvglcC1QDWwXkXWq+r4/Pi9cTU0by/NfvJjvv7yXV/ccY917RwGYPWkcl+Wlc2neRJbnphIdJRRXtPDmgUbeOtBI6dE2VCE5IYbVBZP5/z5yQUSOEy8oKOD555/n85//PK+//vrJ7SJyAXALMA/IAjaIyGxVHQB+BdwFvAu8DKwG/gLcAbSo6iwRuQX4T+CTI41t+5FmEuOibeEV4wq/JH5gGXBQVQ8DiMhTwBrAEv95SoyP4f6Pzec/1hSw91g7bx1o5M0Djfzx3Qp+99YR4qKjiI4SuvoGiIkSlkydwNdWzuayvIksyBlPdASXdebOnXu6l9YAT6lqD3BERA4Cy0SkHEhW1XcAROQx4KN4E/8a4LvO8WuBB0VEdIRLqm0vb2bJtAm28Ipxhb8SfzZQNeR5NbB86A4ichfenhVTp071UxjhIypKmJeVwrysFD5/xUy6+wbYXt7Mmwca6e33cOmsiayYmca4eH/9SsNKNt4e/aBqZ1uf8/jU7YPHVAGoar+ItAFpwAdOwJytbXs8ypJpE5iXlTzqf4gxI+GvLDFcN/Pvekaq+jDwMEBhYWFoLEQbRBJio7ksL53L8tLdDsVVK1eu5NixD053cf/997NmzZrTHXa69nmmdnvWNn1y41nadlSU8P2PzT9dbMb4nb8SfzUwdPKXHOConz7LRLANGzaM5LDTtc9q5/Gp24ceUy0iMUAK0DySDzfGbf4qMG4H8kQkV0Ti8J5IW+enzzLmfK0DbnFG6uQCecA2Va0FOkRkhTOa5zPAi0OOud15/Alg00jr+8a4zS+JX1X7gXuAV4G9wDOquscfn2XM6bzwwgvk5OTwzjvvgLcj8iqA0xafwTvY4BXgbmdED8AXgN8CB4FDeE/sAvwOSHNOBH8dsCHKJmRJMHRaCgsLtaioyO0wTBgTkWJVLQz051rbNv400nZtY8mMMSbCWOI3xpgIY4nfGGMijCV+Y4yJMEFxcldEGoCK07w8kWGujnRZsMVk8ZxdvqoGfGKcEGvbwRYPBF9MwRbPiNp1UFzfr6qnvfxURIrcGI1xJsEWk8VzdiLiytCaUGrbwRYPBF9MwRjPSI6zUo8xxkQYS/zGGBNhQiHxP+x2AMMItpgsnrOzmM4u2OKB4IspLOIJipO7xhhjAicUevzGGGN8yBK/McZEmKBN/CJyk4jsERGPiBSe8tqwC2UHMLbvikiNiJQ4t+sCHYMTR9AtaC8i5c5i5SVuDaEUkd+LSL2IlA7Zlioi60XkgHM/waXYgrZdOzFY2z4Nt9u2T9u1qgblDZgL5ANbgMIh2y8A3gPigVy8U+dGBzi27wLfcPnnE+3822cAcc7P5IIg+L2VAxNdjuFyYAlQOmTbj4B7ncf3Av/pUmxB266dOKxtnz4uV9u2L9t10Pb4VXWvqu4b5qWTC2Wr6hG886YvC2x0QeHkgvaq2gsMLmgf8VT1DT64OtYa4FHn8aN4F1EPOGvX58Ta9jB82a6DNvGfwXALuWefZl9/ukdEdjl/frlRNgiWn8OpFHhNRIqdRceDxST1rrCFc5/hcjynCqbfp7Xt4QVj2x5Ru3Z1ygYR2QBMHualb6vqi8Nsh/NY9Ho0zhQb8CvgP5zP/Q/gAeBzvo7hLALycxiBS1T1qIhkAOtFpMzpqUSMYG7XYG17FMKmbbua+FV15QgOC8hC7ucam4g8AvzZ159/DoJyQXtVPerc14vIC3j/bA+GL0ediGSqaq2IZAL1/vqgYG7XYG17pIK0bY+oXYdiqWfYhbIDGYDzAx70MaD0dPv6UdAtaC8iiSKSNPgY+BDu/GyGM3Sx9Nv52yLqwcL1dg3Wtk8niNv2yNq122fKz3AG+2N4/+fvAeqAV4e89m28Z/33AR92IbY/AruBXc4PPtOln9F1wH7nZ/HtIPidzcA7AuM9YI9bMQFPArVAn9OG7gDSgI3AAec+1aXYgrZdOzFY2x4+Htfbti/btU3ZYIwxESYUSz3GGGNGwRK/McZEGEv8xhgTYSzxG2NMhLHEb4wxEcYSvzHGRBhL/MYYE2H+H3v4Nka6wSJCAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# subplot(nrows, ncols, plot_number)\n", "# Arugments are number of rows and colums of the plot \n", "# and the active plot number\n", "\n", "# Create the x and y coordinates\n", "x = np.arange(-10, 10)\n", "y1 = x**2\n", "y2 = x**3\n", "\n", "# Create a subplot grid with 1 row and 2 colums\n", "# and set the active plot number to 1\n", "plt.subplot(1, 2, 1)\n", "\n", "# Make the first plot at the active plot \n", "plt.plot(x, y1)\n", "plt.title('x^2')\n", "\n", "# Set the active plot number and make the second plot\n", "plt.subplot(1, 2, 2)\n", "plt.plot(x, y2)\n", "plt.title('x^3')\n", "\n", "# Show the figure.\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 8, "id": "e0b7d58c12fb8cba", "metadata": { "ExecuteTime": { "end_time": "2024-09-23T05:08:15.641711Z", "start_time": "2024-09-23T05:08:15.632838Z" } }, "outputs": [ { "ename": "ModuleNotFoundError", "evalue": "No module named 'cv2'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mcv2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mimread\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cat.jpg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'cv2'" ] } ], "source": [ "import numpy as np\n", "from cv2 import imread\n", "import matplotlib.pyplot as plt\n", "\n", "img = imread('cat.jpg')\n", "\n", "# Plot the image\n", "plt.imshow(img)\n", "\n", "# Imshow works better if the data is with type unit8, here we \n", "# cast the image to uint8 explicitly.\n", "plt.imshow(np.uint8(img))\n", "\n", "# Show the image\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "73e33261fac183cd", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.11" } }, "nbformat": 4, "nbformat_minor": 5 }