\documentclass{article} \title{The Best Place to \textit{Eat} and \textit{Drink} in the \textsc{Surfer's Paradise}} \author{\textbf{A}ayush Baja\textbf{j}} \usepackage{fancyhdr} \usepackage[top=40mm,bottom=40mm,right=40mm,left=40mm]{geometry} \usepackage{tcolorbox} \usepackage{multicol} \tcbuselibrary{theorems} %\newtcbtheorem{mytheo}{@1}{colback=purple!5,colframe=blue!100!,fonttitle=\bfseries}{th} \providecommand\theoremnumber{} \newtcbtheorem{Theorembase}{Theorem \theoremnumber}{colback=purple!5,colframe=blue!100!,fonttitle=\bfseries}{Th} \newenvironment{Theorem}[1] {\renewcommand{\theoremnumber}{#1}\begin{Theorembase*}} {\end{Theorembase*}} \newtcbtheorem{Proofbase}{Proof \theoremnumber}{colback=purple!5,colframe=red!85!,fonttitle=\bfseries}{Th} \newenvironment{Proof}[1] {\renewcommand{\theoremnumber}{#1}\begin{Proofbase*}} {\end{Proofbase*}} \newtcbtheorem{Lemmabase}{Lemma \theoremnumber}{colback=purple!5,colframe=green!70!,fonttitle=\bfseries}{Th} \newenvironment{Lemma}[1] {\renewcommand{\theoremnumber}{#1}\begin{Lemmabase*}} {\end{Lemmabase*}} %unsw theorem %\usepackage[tikz]{mdframed} %\usepackage{xcolor,comment} %\newmdenv[backgroundcolor=answerboxcolor]{answerbox} %\colorlet{answerboxcolor}{blue!20} \pagestyle{fancy} \fancyhf{} \fancyfoot[RO]{ \includegraphics[width=2cm]{qr.png} } \begin{document} \maketitle \thispagestyle{fancy} \dotfill \begin{Theorem}{1}{} Alfresco Italian Restaurant is the best place to eat and drink in the \textsc{Surfer's Paradise}. \end{Theorem} \begin{Lemma}{1}{} Let $P$ be the set of restaurants with affordable pricing, $E$ be the set of restaurants with high quality food, $N$ be the set of restaurants with good atmosphere, $I$ be the set of restaurants with good drinks and $S$ be the set of all restaurants with interesting culture. Then any $u \in U$ such that $u \in {P \cup E \cup N \cup I \cup S}$, where $U$ denotes the Universal set is a candidate for being "the best place to eat and drink in the \textsc{Surfer's Paradise}". \end{Lemma} \begin{Proof}{1}{} Let $a$ be an arbitrary element in the universal set $U$, We must show that $a \in {P\cup E\cup N\cup I\cup S}$. \begin{multicols}{5} \includegraphics[width=3cm]{1.png} \hspace{1cm} \includegraphics[width=2cm]{2.png} \includegraphics[width=3cm]{3.png} \includegraphics[width=3cm]{4.png} \hspace{1cm} \includegraphics[width=2cm]{5.png} \end{multicols} Thus by considering the family supersets of the arbitrary element $a$, we see that the necessary and sufficient condition holds and therefore \textbf{Alfresco Italian Restaurant} is at least one of the best places to eat and drink in the Surfer's Paradise. \end{Proof} \end{document}