\documentclass{article} \title{\underline{\textbf{21 Problems}}} \author{Aayush Bajaj} \date{December 26, 2022} \usepackage{tikz} \usetikzlibrary{shapes.geometric} \usepackage[export]{adjustbox} \usepackage{multicol,caption} \usepackage{graphicx} \usepackage{fancyhdr} \usepackage{enumitem} \usepackage{amsmath} \usepackage{geometry} \geometry{ top = 20mm, bottom = 35mm, right = 20mm, left = 20mm } \pagestyle{fancy} \begin{document} \maketitle \bigbreak \hrulefill \bigbreak \noindent\fbox{ \parbox{\textwidth}{Welcome! Today is the $26^{th}$ of December, and it is my birthday :D.\\\\Today we are going to be playing a game called \textit{21 Problems}. This game consists of 21 \textbf{mathematical} problems and whoever has the highest score by midnight will be the winner! } } \bigbreak \dotfill \section{Rules} \begin{enumerate} \item Solutions must be written on a piece of \textbf{WHITE} paper in \textbf{BLACK} pen. \begin{enumerate}[label*=\arabic*.] \item White paper can be found attached to the board in the study. Black pens are beside the board. \end{enumerate} \item To create a submission: \begin{enumerate}[label*=\arabic*.] \item Fold the piece of paper so that your solution is \textbf{not} visible, and \item Attach it to the board in the study with a magnet. \end{enumerate} \item Each submission must contain: \begin{enumerate}[label*=\arabic*.] \item Your name; \item The question number; \end{enumerate} \item Submissions will not be accepted after \textbf{11:59PM} on the 26th of December, 2022 \item You may not use the \textit{internet}, but you may use any \textit{book}. \end{enumerate} \section{Diagrams} \begin{multicols}{3} \begin{minipage}{\linewidth} \centering \begin{tikzpicture} [cube/.style={thick,black}, grid/.style={very thin,gray}, axis/.style={->,blue,thick}] %draw the top and bottom of the cube \draw[cube] (0,0,0) -- (0,2,0) -- (2,2,0) node[above right] {$B$} -- (2,0,0) -- cycle; \draw[cube] (0,0,2) -- (0,2,2) node[left, midway]{$1\text{cm}$} -- (2,2,2) -- (2,0,2) -- node[below, midway] {$A$} cycle; %draw the edges of the cube \draw[cube] (0,0,0) -- (0,0,2); \draw[cube] (0,2,0) -- (0,2,2); \draw[cube] (2,0,0) -- (2,0,2); \draw[cube] (2,2,0) -- (2,2,2); \end{tikzpicture} \captionof*{figure}{Q4. Sugar Cube} \end{minipage} \begin{minipage}{\linewidth} \centering \begin{tikzpicture}[scale=0.8] \fill[gray] (1, 1.2) -- (3, 1.2) -- (3.9, 3) -- (1.9, 3); \draw[thick] (1, 1.2) circle [radius=1cm]; \draw[thick] (3, 1.2) circle [radius=1cm]; \draw[thick] (1.9, 3) circle [radius=1cm]; \draw[thick] (3.9, 3) circle [radius=1cm]; \end{tikzpicture} \captionof*{figure}{Q5. Hexagonal Packing} \end{minipage} \begin{minipage}{\linewidth} \includegraphics[width=0.7\linewidth,center]{img/implicit.png} \captionof*{figure}{Q18. Implicit Curve} \end{minipage} \end{multicols} \newpage{} \fancyhead{} \fancyfoot[L]{ \begin{minipage}{0.25\linewidth} \centering \begin{tikzpicture}[scale=0.8] \draw (0,0) -- (4,0) node[midway,below] {$7$} -- (1,2) node[midway, above right] {$6$} -- (0,0) node[midway, above left] {$4$}; \end{tikzpicture} \captionof*{figure}{Q16. Hero's Triangle} \end{minipage} } \fancyfoot[R]{ \begin{minipage}{0.25\linewidth} \centering \begin{tikzpicture}[ main tri/.style={isosceles triangle,fill,isosceles triangle apex angle=60, rotate=90,inner sep=0,outer sep=0}, filler tri/.style={isosceles triangle,fill=white,rotate=-90,isosceles triangle apex angle=60, inner sep=0,outer sep=0}] \node[minimum height=2cm,main tri] (a) {}; %================== \node[minimum height=1cm,filler tri] (b) at (a.center){}; %================== \node[minimum height=0.5cm,filler tri,anchor=right corner] (c1) at (b.left side){}; \node[minimum height=0.5cm,filler tri,anchor=left corner] (c2) at (b.right side){}; \node[minimum height=0.5cm,filler tri,anchor=apex] (c3) at (b.west){}; % =================== \foreach \x in {1,2,3}{ \node[minimum height=0.25cm,filler tri,anchor=right corner] (d1\x) at (c\x.left side){}; \node[minimum height=0.25cm,filler tri,anchor=left corner] (d2\x) at (c\x.right side){}; \node[minimum height=0.25cm,filler tri,anchor=apex] (d3\x) at (c\x.west){}; } % =================== \foreach \x in {1,2,3}{ \foreach \y in {1,2,3}{ \node[minimum height=0.125cm,filler tri,anchor=right corner] (e1\x\y) at (d\x\y.left side){}; \node[minimum height=0.125cm,filler tri,anchor=left corner] (e2\x\y) at (d\x\y.right side){}; \node[minimum height=0.125cm,filler tri,anchor=apex] (e3\x\y) at (d\x\y.west){}; } } \end{tikzpicture} \captionof*{figure}{Q6. Sierpinski's Triangle} \end{minipage} } \section{Problems} \begin{enumerate} \item Prove that $\frac{1}{0}$ is undefined.\hfill{}\textit{(2 marks)} \item Derive the identity $\sin ^2(\theta) + \cos ^2(\theta) = 1$.\hfill{}\textit{(2 marks)} \begin{enumerate}[label*=\arabic*.] \item Hence, and not otherwise, show that $1 + \cot ^2(\theta) = \csc ^2(\theta)$.\hfill{}\textit{(1 marks)} \end{enumerate} \item Find the sum of the first $1,000$ positive integers.\hfill{}\textit{(2 marks)} \item An ant sits on point A of $1\text{cm} \times 1\text{cm}$ sugar cube. She wants to get to point B. What is the shortest distance she can take?\hfill{}\textit{(3 marks)} \item What fraction of total area do the circles cover if the circles have a radius of 1.\hfill{}\textit{(3.5 marks)} \item What is the dimension of Sierpinski's triangle?\hfill{}\textit{(4 marks)} \item Prove that $\sqrt{2}$ is irrational.\hfill{}\textit{(3 marks)} \item Derive the quadratic formula.\hfill{}\textit{(3.5 marks)} \item Find the equation of the tangent and the equation of the normal to the function $f(x) = x^3 - 3x$ at the point $x = 2$.\hfill{}\textit{(4 marks)} \item Solve $p(x) = 2x^3 - 11x^2 +14x + 10$ if $p(3 + i) = 0$.\hfill{}\textit{(3 marks)} \item $\int (e^{t^2} + 16) te^{t^2} \, dt$.\hfill{}\textit{(2.5 marks)} \item $\int \tan (t) \sec ^2(t) \, dt$.\hfill{}\textit{(4 marks)} \item Sketch $\frac{1}{(x-3)(x-4)}$.\hfill{}\textit{(4 marks)} \item Balance the following chemical equations: \begin{enumerate}[label*=\arabic*.] \item $C_3H_8O_2 \rightarrow CO_2 + H_2O$ (combustion of propane!)\hfill{}\textit{(1 marks)} \item $CO_2 + H_2O \rightarrow C_6H_{12}O_6$ (photosynthesis)\hfill{}\textit{(1 marks)} \item $HCl + Na_3PO_4 \rightarrow H_3PO_4 + NaCl$\hfill{}\textit{(1 marks)} \end{enumerate} \item How many \textit{distinct} arrangements are there of the word \textbf{BANANA}?\hfill{}\textit{(3 marks)} \item Find the \underline{exact} area of the following triangle.\hfill{}\textit{(4 marks)} \item $\int^1_{-1} \cos(2x) + x^2 + 2^x + \frac{2}{x}\, dx$.\hfill{}\textit{(3.5 marks)} \item Find the equation\textit{s} of the tangent\textit{s} to $2x^3 + 2y^3 = 9xy$ at $x = 1$.\hfill{}\textit{(4.5 marks)} \item Glenn, the fast bowler runs in to bowl and releases the ball 2.4 metres above the ground with a speed of 144 km/h at an angle of $7^\circ$ below the horizontal. Take $g = 10 m/s^2$ and find how long before the ball hits the pitch.\hfill{}\textit{(5 marks)} \item Let $\vec{u} = (4,-1), \, \vec{v} = (0,5), \, \vec{w} = (-3,-3)$: Find: \begin{enumerate}[label*=\arabic*.] \item $\vec{u} + \vec{w}$\hfill{}\textit{(1 marks)} \item $\left| \vec{u} + \vec{w} \right|$\hfill{}\textit{(1 marks)} \item $3\vec{v} - 2\vec{u} + \vec{v}$\hfill{}\textit{(2 marks)} \end{enumerate} \item Solve the values of $x$ which satisfy the equation $23x \equiv 11 (\text{mod }30)$.\hfill{}\textit{(3 marks)} \end{enumerate} \end{document}