// Import the rendercv function and all the refactored components #import "@preview/rendercv:0.1.0": * // Apply the rendercv template with custom configuration #show: rendercv.with( name: "Aayush Bajaj", footer: context { [#emph[Aayush Bajaj -- #str(here().page())\/#str(counter(page).final().first())]] }, top-note: [ #emph[Last updated in Jan 2026] ], locale-catalog-language: "en", page-size: "us-letter", page-top-margin: 1.3cm, page-bottom-margin: 1.3cm, page-left-margin: 1.2cm, page-right-margin: 1.2cm, page-show-footer: false, page-show-top-note: false, colors-body: rgb(0, 0, 0), colors-name: rgb(0, 0, 0), colors-headline: rgb(0, 0, 0), colors-connections: rgb(0, 0, 0), colors-section-titles: rgb(0, 0, 0), colors-links: rgb(0, 79, 144), colors-footer: rgb(128, 128, 128), colors-top-note: rgb(128, 128, 128), typography-line-spacing: 0.55em, typography-alignment: "justified", typography-date-and-location-column-alignment: right, typography-font-family-body: "New Computer Modern", typography-font-family-name: "New Computer Modern", typography-font-family-headline: "Source Sans 3", typography-font-family-connections: "New Computer Modern", typography-font-family-section-titles: "New Computer Modern", typography-font-size-body: 10pt, typography-font-size-name: 28pt, typography-font-size-headline: 10pt, typography-font-size-connections: 10pt, typography-font-size-section-titles: 1.3em, typography-small-caps-name: false, typography-small-caps-headline: false, typography-small-caps-connections: false, typography-small-caps-section-titles: false, typography-bold-name: true, typography-bold-headline: false, typography-bold-connections: false, typography-bold-section-titles: true, links-underline: true, links-show-external-link-icon: false, header-alignment: center, header-photo-width: 3.5cm, header-space-below-name: 0.3cm, header-space-below-headline: 0.7cm, header-space-below-connections: 0.3cm, header-connections-hyperlink: true, header-connections-show-icons: true, header-connections-display-urls-instead-of-usernames: true, header-connections-separator: "", header-connections-space-between-connections: 0.5cm, section-titles-type: "with_full_line", section-titles-line-thickness: 0.5pt, section-titles-space-above: 0.25cm, section-titles-space-below: 0.15cm, sections-allow-page-break: false, sections-space-between-text-based-entries: 0.3em, sections-space-between-regular-entries: 0.6em, entries-date-and-location-width: 4cm, entries-side-space: 0.15cm, entries-space-between-columns: 0.1cm, entries-allow-page-break: false, entries-short-second-row: false, entries-summary-space-left: 0cm, entries-summary-space-above: 0cm, entries-highlights-bullet: "◦" , entries-highlights-nested-bullet: "-" , entries-highlights-space-left: 0.3cm, entries-highlights-space-above: 0.1cm, entries-highlights-space-between-items: 0.05cm, entries-highlights-space-between-bullet-and-text: 0.4em, date: datetime( year: 2026, month: 1, day: 11, ), ) = Aayush Bajaj #connections( [#connection-with-icon("location-dot")[Sydney]], [#link("mailto:j@abaj.ai", icon: false, if-underline: false, if-color: false)[#connection-with-icon("envelope")[j\@abaj.ai]]], [#link("tel:+61-481-910-408", icon: false, if-underline: false, if-color: false)[#connection-with-icon("phone")[0481 910 408]]], [#link("https://abaj.ai/", icon: false, if-underline: false, if-color: false)[#connection-with-icon("link")[abaj.ai]]], [#link("https://github.com/abaj8494", icon: false, if-underline: false, if-color: false)[#connection-with-icon("github")[github.com\/abaj8494]]], [#link("https://linkedin.com/in/abaj", icon: false, if-underline: false, if-color: false)[#connection-with-icon("linkedin")[linkedin.com\/in\/abaj]]], ) == Education #education-entry( [ #strong[University of New South Wales] #emph[Master of Statistics] ], [ #emph[Sydney, Australia] #emph[Feb 2027 – Dec 2029] ], main-column-second-row: [ ], ) #education-entry( [ #strong[University of New South Wales] #emph[Bachelor of Computer Science (AI), Minor Mathematics] ], [ #emph[Sydney, Australia] #emph[Feb 2021 – Sept 2025] ], main-column-second-row: [ ], ) == Skills #strong[Deep Learning:] PyTorch, TensorFlow, HuggingFace Transformers, nnU-Net, U-Net, CNNs, LLMs, RAG #strong[ML Engineering:] Python, CUDA, HPC (H200\/A200), Distributed Training, Model Optimisation, Hyperparameter Tuning #strong[Computer Vision:] Semantic Segmentation, 3D Medical Imaging, Data Augmentation, Preprocessing Pipelines #strong[LLM & GenAI:] LangChain, LangGraph, LlamaIndex, smolagents, OpenAI API, Prompt Engineering, Fine-tuning, RAG #strong[MLOps & Cloud:] Docker, AWS, Azure, Git, Experiment Tracking, Model Deployment == Projects #regular-entry( [ #strong[#link("https://abaj.ai/projects/dl/kits19")[Biomedical Semantic Segmentation]] ], [ #emph[KiTS19] ], main-column-second-row: [ #summary[Production-grade kidney and tumour segmentation from 3D CT scans on official KiTS19 leaderboard.] - Achieved 0.9129 Dice score (ranked \#57 globally) by implementing nnU-Net with systematic hyperparameter optimisation on H200 GPUs. - Reproduced state-of-the-art 3D medical imaging pipeline end-to-end; published technical report with ablation studies comparing 2D vs 3D architectures. ], ) #regular-entry( [ #strong[Full-Stack LLM Chat Application] ], [ ], main-column-second-row: [ #summary[Production-ready conversational AI with RAG pipeline, streaming responses, and persistent context.] - Architected full-stack chat application using TypeScript, Bun, Svelte, and Prisma ORM with PostgreSQL; integrated OpenAI GPT API with streaming. - Implemented security middleware with rate limiting, response caching, and structured logging; validated with Zod schemas and comprehensive test suite. ], ) #regular-entry( [ #strong[#link("https://github.com/abaj8494/10khrs-ai-ml-dl")[Neural Networks: Zero to Hero]] ], [ #emph[Karpathy] ], main-column-second-row: [ #summary[From-scratch implementations of neural networks culminating in a GPT language model.] - Built micrograd (autograd engine), makemore (character-level LM), and nanoGPT following Andrej Karpathy's curriculum. - Implemented backpropagation, attention mechanisms, and transformer architecture from first principles in pure Python\/PyTorch. ], ) #regular-entry( [ #strong[#link("https://abaj.ai/doc/publications/dead-tree-seg.pdf")[Dead Tree Segmentation]] ], [ #emph[Kaggle] ], main-column-second-row: [ #summary[Semantic segmentation of live\/dead trees from satellite imagery with severe class imbalance.] - Achieved 0.71 IoU on 97\% imbalanced dataset by implementing U-Net from scratch (31M parameters) with Dice + Focal loss combination. - Parallelised training pipeline on CUDA-enabled HPC; applied morphological post-processing for boundary refinement. ], ) #regular-entry( [ #strong[#link("https://abaj.ai")[Augmenting Infrastructure]] ], [ #emph[Monorepo] ], main-column-second-row: [ #summary[Technical knowledge platform with ML\/AI research notes, graduate-level mathematics, tutorials, and paper summaries.] - Architected full-stack content platform with Hugo static generation, Emacs org-mode authoring, and bidirectional linking across 1,073+ pages. - Built literate programming environment with org-babel for executable Python\/Julia notebooks, replicating Jupyter workflows with version control. ], ) == Certificates #regular-entry( [ #strong[AWS Solutions Architect (SAA-C03)] ], [ #emph[Jan 2026 – Feb 2026] ], main-column-second-row: [ #emph[Amazon Web Services] ], ) #regular-entry( [ #strong[AI Agents Course] ], [ #emph[Jan 2026 – Jan 2026] ], main-column-second-row: [ #emph[Hugging Face] ], )