

CHAPTER

14

Number and Algebra

Indices, exponentials and logarithms – part 2

In Chapter 9, starting with integer powers of numbers, we developed the ideas of the exponential function and the logarithmic function. We learned basic properties, such as:

$$2^x 2^y = 2^{x+y} \quad \text{and} \quad \log_2(xy) = \log_2 x + \log_2 y$$

In this chapter, we will investigate the change of base formula and meet a range of new applications, especially applications to science.

14A Logarithm rules

In Section 9G, we introduced logarithms. Logarithms are closely related to indices. Recall that the logarithm of a number to base a is the **index** to which a is raised to give this number. For example:

$$3^4 = 81 \text{ is equivalent to } \log_3 81 = 4$$

$$10^6 = 1000000 \text{ is equivalent to } \log_{10} 1000000 = 6$$

$$5^{-3} = \frac{1}{125} \text{ is equivalent to } \log_5 \frac{1}{125} = -3$$

$$\frac{3}{16^4} = 8 \text{ is equivalent to } \log_{16} 8 = \frac{3}{4}$$

In general, the **logarithmic function** is defined as follows:

$$\text{If } a > 0, a \neq 1 \text{ and } y = a^x, \text{ then } \log_a y = x$$

Logarithms obey a number of important laws. Each one comes from a property of indices.

Index laws

If a and b are positive numbers and x and y are rational numbers, then:

$$\text{Index law 1 } a^x a^y = a^{x+y}$$

$$\text{Index law 2 } \frac{a^x}{a^y} = a^{x-y}$$

$$\text{Index law 3 } (a^x)^y = a^{xy}$$

$$\text{Index law 4 } (ab)^x = a^x b^x$$

$$\text{Index law 5 } \left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$$

The first three index laws have a direct correspondence to the first three logarithmic laws, which are developed below.

Suppose $a > 0$ and $a \neq 1$ for the rest of this section.

Logarithmic Law 1 If x and y are positive numbers, then $\log_a xy = \log_a x + \log_a y$.
That is, the logarithm of a product is the sum of the logarithms.

Suppose that $\log_a x = c$ and $\log_a y = d$

That is, $x = a^c$ and $y = a^d$

Then $xy = a^c \times a^d$

$$= a^{c+d} \quad (\text{by Index law 1})$$

So $\log_a xy = \log_a a^{c+d}$

$$= c + d$$

$$= \log_a x + \log_a y$$

Logarithmic Law 2 If x and y are positive numbers, then $\log_a \frac{x}{y} = \log_a x - \log_a y$.

That is, the logarithm of a quotient is the difference of their logarithms.

Suppose that $\log_a x = c$ and $\log_a y = d$

That is, $x = a^c$ and $y = a^d$

Then
$$\begin{aligned} \frac{x}{y} &= \frac{a^c}{a^d} \\ &= a^{c-d} \quad (\text{by Index law 2}) \end{aligned}$$

So
$$\begin{aligned} \log_a \frac{x}{y} &= \log_a a^{c-d} \\ &= c - d \\ &= \log_a x - \log_a y \end{aligned}$$

Logarithmic Law 3 If x is a positive number and n is any rational number, then $\log_a(x^n) = n \log_a x$.

This follows from index law 3. Suppose that $\log_a x = c$. That is, $x = a^c$.

Then $x^n = (a^c)^n = a^{cn}$ (by Index law 3)

So $\log_a(x^n) = \log_a(a^{cn})$

Hence,
$$\begin{aligned} \log_a(x^n) &= cn \\ &= n \log_a x, \text{ as required} \end{aligned}$$

Logarithmic Law 4 If x is a positive number, then $\log_a \frac{1}{x} = -\log_a x$.

This follows from logarithm law 3.

$$\begin{aligned} \log_a \frac{1}{x} &= \log_a x^{-1} \quad (\text{definition}) \\ &= -\log_a x \quad (\text{logarithm law 3}) \end{aligned}$$

Logarithmic Law 5 $\log_a 1 = 0$ and $\log_a a = 1$

Let the base a be a positive number, with $a \neq 1$.

Since $a^0 = 1$, we have $\log_a 1 = 0$.

Similarly, since $a^1 = a$, we have $\log_a a = 1$.

Example 1

Write each statement in logarithmic form.

a $2^4 = 16$

b $5^3 = 125$

c $10^{-3} = 0.001$

d $2^{-4} = \frac{1}{16}$

Solution

a $2^4 = 16$ so $\log_2 16 = 4$

c $10^{-3} = 0.001$ so $\log_{10} 0.001 = -3$

b $5^3 = 125$ so $\log_5 125 = 3$

d $2^{-4} = \frac{1}{16}$ so $\log_2 \frac{1}{16} = -4$

Example 2

Evaluate each logarithm.

a $\log_2 256$

b $\log_2 \sqrt[3]{2}$

c $\log_3 81$

d $\log_9 81$

e $\log_5 \frac{1}{5}$

f $\log_7 \frac{1}{49}$

Solution**Method 1**

a $256 = 2^8$, so $\log_2 256 = 8$

c $81 = 3^4$, so $\log_3 81 = 4$

e $\log_5 \frac{1}{5} = \log_5 5^{-1}$
 $= -1$

b $\sqrt[3]{2} = 2^{\frac{1}{3}}$, so $\log_2 \sqrt[3]{2} = \frac{1}{3}$

d $81 = 9^2$, so $\log_9 81 = 2$

f $\log_7 \frac{1}{49} = \log_7 7^{-2}$
 $= -2$

Method 2

The following method introduces a pronumeral x .

a Let $x = \log_2 256$

so $2^x = 256 = 2^8$

$x = 8$

b Let $x = \log_2 \sqrt[3]{2}$

so $2^x = \sqrt[3]{2} = 2^{\frac{1}{3}}$

$x = \frac{1}{3}$

c Let $x = \log_3 81$

so $3^x = 81 = 3^4$

$x = 4$

d Let $x = \log_9 81$

so $9^x = 81 = 9^2$

$x = 2$

Example 3

Solve each logarithmic equation.

a $\log_2 x = 5$

b $\log_7(x - 1) = 2$

c $\log_x 64 = 6$

d $\log_x \frac{1}{25} = -2$

Solution

a $\log_2 x = 5$

so $x = 2^5$
 $= 32$

b $\log_7 (x - 1) = 2$

so $x - 1 = 7^2$
 $= 49$
 $x = 50$

c $\log_x 64 = 6$

so $x^6 = 64$
 $x^6 = 2^6$
 $x = 2$, since $x > 0$

d $\log_x \frac{1}{25} = -2$

so $x^{-2} = \frac{1}{25}$
 $x^2 = 25$
 $x = 5$, since $x > 0$

Example 4

Write each statement in logarithmic form.

a $y = b^x$

b $a^x = N$

c $7^0 = 1$

d $3\sqrt{3} = 3^{\frac{3}{2}}$

Solution

a $y = b^x$ becomes $x = \log_b y$

b $a^x = N$ becomes $x = \log_a N$

c $7^0 = 1$ becomes $\log_7 1 = 0$

d $3\sqrt{3} = 3^{\frac{3}{2}}$ becomes $\log_3 3\sqrt{3} = \frac{3}{2}$

Example 5

Given $\log_7 2 = \alpha$, $\log_7 3 = \beta$ and $\log_7 5 = \gamma$, express each in terms of α , β and γ .

a $\log_7 6$

b $\log_7 75$

c $\log_7 \frac{15}{2}$

Solution

a $\log_7 6 = \log_7 (2 \times 3)$

b $\log_7 75 = \log_7 (3 \times 25)$

$= \log_7 2 + \log_7 3$

$= \log_7 3 + \log_7 5^2$

$= \alpha + \beta$

$= \log_7 3 + 2 \log_7 5$

$= \beta + 2\gamma$

c $\log_7 \frac{15}{2} = \log_7 15 - \log_7 2$

$= \log_7 (3 \times 5) - \log_7 2$

$= \log_7 3 + \log_7 5 - \log_7 2$

$= \beta + \gamma - \alpha$

Exercise 14A

Example 2

1 Calculate each logarithm.

a $\log_2 8$

b $\log_3 27$

c $\log_2 2048$

d $\log_7 1$

e $\log_5 625$

f $\log_7 343$

g $\log_{10} 10\ 000$

h $\log_{10} 1\ 000\ 000$

2 Calculate:

a $\log_2 \frac{1}{16}$

b $\log_3 \frac{1}{27}$

c $\log_{10} \frac{1}{10}$

d $\log_{10} 0.01$

e $\log_5 \frac{1}{125}$

f $\log_6 \frac{1}{36}$

g $\log_2 \frac{1}{1024}$

h $\log_{10} 0.0001$

3 Evaluate:

a $\log_2 2\sqrt{2}$

b $\log_3 9\sqrt{3}$

c $\log_6 36\sqrt{6}$

d $\log_2 4\sqrt{2}$

e $\log_3(27\sqrt{3})$

f $\log_{10} \left(\frac{1}{100\sqrt{10}} \right)$

g $\log_5(5^2 \times \sqrt[3]{5})$

h $\log_8 \sqrt{2}$

Example
3a, b4 Solve each equation for x .

a $\log_2 x = 5$

b $\log_3 x = 6$

c $\log_{10} x = 3$

d $\log_{10} x = -3$

e $\log_{10} x = -4$

f $\log_5 x = 4$

g $\log_2(x - 3) = 1$

h $\log_2(x + 4) = 6$

i $\log_2(x - 5) = 3$

Example
3c, d

5 Solve each equation.

a $\log_x 81 = 2$

b $\log_x 8 = 6$

c $\log_x 1024 = 5$

d $\log_x 1024 = 10$

e $\log_x 9 = 2$

f $\log_x 1000 = 3$

Example
1, 4

6 Write each statement in logarithmic form.

a $2 = (\sqrt{2})^2$

b $0.001 = 10^{-3}$

c $\left(\frac{1}{2}\right)^{-1} = 2$

d $1024 = 32^2$

e $10^x = N$

f $5\sqrt{2} = 5^{\frac{3}{2}}$

g $5^0 = 1$

h $13^1 = 13$

7 Write each statement in exponential form.

a $\log_2 32 = 5$

b $\log_3 81 = 4$

c $\log_{10} 0.001 = -3$

d $\log_3 27\sqrt{3} = \frac{7}{2}$

e $\log_b y = x$

f $\log_a N = x$

8 Simplify:

a $\log_3 7 + \log_3 5$

b $\log_2 3 + \log_2 5$

c $\log_2 9 + \log_2 7$

d $\log_{10} 5 + \log_{10} 20$

e $\log_6 4 + \log_6 9$

f $\log_3 7 + \log_3 \frac{1}{7}$

9 Simplify:

a $\log_3 100 - \log_3 10$

b $\log_7 20 - \log_7 10$

c $\log_7 21 - \log_7 3$

d $\log_3 17 - \log_3 51$

e $\log_5 100 - \log_5 10$

f $\log_5 10 - \log_5 2$

10 Simplify:

a $\log_2 3 + \log_2 5 + \log_2 7$

b $\log_3 100 - \log_3 10 - \log_3 2$

c $\log_5 7 + \log_5 343 - 2 \log_5 49$

d $\log_7 25 + \log_7 3 - \log_7 75$

Example 5

11 Given that $\log_{10} 2 = \alpha$, $\log_{10} 3 = \beta$, $\log_{10} 5 = \gamma$ and $\log_{10} 7 = \delta$, express in terms of α , β , γ and δ :

a $\log_{10} 12$

b $\log_{10} 75$

c $\log_{10} 210$

d $\log_{10} 6\ 000\ 000$

e $\log_{10} 1875$

f $\log_{10} 1050$

g $\log_{10}(2^a 3^b 5^c 7^d)$

h What does $\alpha + \gamma$ equal?

12 Find a relation between x and y that does not involve logarithms.

a $\log_3 x + \log_3 y = \log_3(x + y)$

b $2\log_{10} x - 3\log_{10} y = -1$

c $\log_5 y = 3 + 2\log_5 x$

d $\log_7(1 + y) - \log_7(1 - y) = x$

13 $V = \frac{4}{3}\pi r^3$ is the volume of a sphere of radius r . Express $\log_2 V$ in terms of $\log_2 r$.

14 If $y = a \times 10^{bx}$, express x in terms of the other prumerals.

15 Solve $\log_{10} A = bt + \log_{10} P$ for A .

14B Change of base

In Section 14A we studied logarithms to one base (which was a positive number other than 1) and their relationships, such as:

$$\log_a x + \log_a y = \log_a xy$$

Often we need to work with different bases and, in particular, calculate quantities such as $\log_5 8$, which is clearly between 1 and 2. It is of immediate concern that some calculators do not have the capacity to calculate $\log_5 8$ directly, but they can calculate $\log_{10} 8$ and $\log_{10} 5$.

We will show that $\log_5 8 = \frac{\log_{10} 8}{\log_{10} 5} \approx 1.2920$.

This is a special case of the **change of base formula**:

$$\log_b c = \frac{\log_a c}{\log_a b}$$

where a , b and c are positive numbers, $a \neq 1$ and $b \neq 1$.

The change of base formula is very important in later mathematics.

Proof 1

Let $x = \log_b c$ so, $b^x = c$

Taking logarithms to base a of both sides:

$$\log_a b^x = \log_a c$$

$$x \log_a b = \log_a c \quad (\text{Logarithm law 3})$$

$$x = \frac{\log_a c}{\log_a b}$$

$$\text{That is, } \log_b c = \frac{\log_a c}{\log_a b}$$

Proof 2

If $\log_a b = e$, then $a^e = b$

Similarly, if $\log_b c = f$, then $b^f = c$

$$\text{Hence, } c = b^f = (a^e)^f = a^{ef}$$

$$\text{So } \log_a c = ef = \log_a b \times \log_b c$$

$$\text{and } \log_b c = \frac{\log_a c}{\log_a b}$$

Change of base formula

- If a , b and c are positive numbers, $a \neq 1$ and $b \neq 1$ then:

$$\log_b c = \frac{\log_a c}{\log_a b}$$

- This formula can also be written as:

$$\log_a c = \log_a b \times \log_b c$$

These formulas are called ‘change of base’ formulas, since they allow the calculation of logarithms to the base b from knowledge of logarithms to the base a .

Example 6

By changing to base 2, calculate $\log_{16} 8$.

Solution

$$\log_2 8 = 3 \text{ and } \log_2 16 = 4,$$

$$\begin{aligned} \text{hence, } \log_{16} 8 &= \frac{\log_2 8}{\log_2 16} \\ &= \frac{3}{4} \end{aligned}$$

$$\text{So } \log_{16} 8 = \frac{3}{4}$$

$$\text{As a check, } 16^{\frac{3}{4}} = (2^4)^{\frac{3}{4}} = 2^3 = 8$$

Example 7

Calculate $\log_7 8$, correct to four decimal places, using base 10 logarithms

Solution

Changing from base 7 to base 10:

$$\log_7 8 = \frac{\log_{10} 8}{\log_{10} 7}$$

$$\approx 1.0686$$

As a check, $7^{1.0686} \approx 7.9997$ with a calculator.

Example 8

If $3^x = 7$, calculate x , correct to four decimal places.

Solution

$$x = \log_3 7 = \frac{\log_{10} 7}{\log_{10} 3}$$

$$\approx 1.7712$$

Example 9

Suppose that $a > 0$. Find the exact value of $\log_{a^2} a^3$.

Solution

$$\begin{aligned}\log_{a^2} a^3 &= \frac{\log_a a^3}{\log_a a^2} \\ &= \frac{3 \log_a a}{2 \log_a a} \\ &= \frac{3}{2}\end{aligned}$$

As a check, $(a^2)^{\frac{3}{2}} = a^3$

Exercise 14B

In this exercise, a , b and c are positive and not equal to 1.

Example 6

1 a By changing to base 3, calculate $\log_9 243$.

b By changing to base 2, calculate $\log_8 32$.

Example 7

2 Use the change of base formula to convert to base 10 and calculate these logarithms, correct to four decimal places.

a $\log_7 9$

b $\log_5 3$

c $\log_3 5$

d $\log_3 13$

e $\log_{19} 17$

f $\log_7 \frac{1}{4}$

Example 8

3 Solve for x , correct to four decimal places.

a $2^x = 5$

b $3^x = 18$

c $5^x = 2$

d $5^x = 17$

e $2^{-x} = 7$

f $3^{-x} = 5$

4 Solve for x , correct to four decimal places.

a $(0.01)^x = 7$

b $5^{1-2x} = 3$

c $4^{2x-1} = 7^{x-3}$

d $3^{3x-3} = 5^{5x-5}$

5 Simplify:

a $(\log_a b)(\log_b a)$

b $(\log_a b)(\log_b c)(\log_c a)$

6 Change to base a and simplify.

a $\log_{a^2} a^3$

b $\log_{a^2} a^7$

c $\log_{a^3} a^5$

d $\log_{\sqrt[3]{a}} \sqrt[11]{a}$

e $\log_a a^8 - \log_a a^7 + \log_a a^{11}$

f $\log_{\sqrt[3]{a}} \sqrt[3]{a} + \log_{\sqrt[4]{a}} \sqrt[4]{a} + \log_{\sqrt[4]{a}} \sqrt[5]{a}$

14C

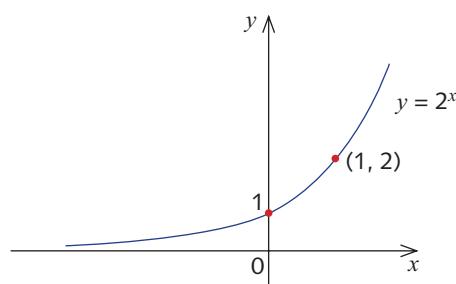
Graphs of exponential and logarithm functions

We saw the basic shape of the graph of an exponential function in Chapter 9.

For example, $y = 2^x$ is graphed to the right.

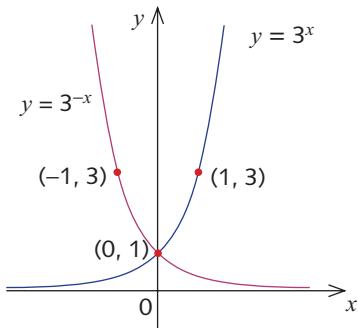
The graph has the following features:

- The y -intercept is 1.
- There is no x -intercept.
- The y -values are always positive.
- As x takes large positive values, 2^x becomes very large.
- As x takes large negative values, 2^x becomes very small.
- The x -axis is an asymptote to the graph.



Here are the graphs of $y = 3^x$ and $y = 3^{-x}$ drawn on the same axes.

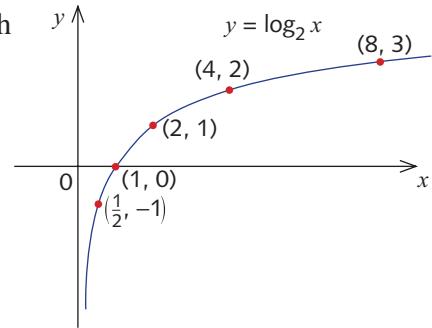
Notice that $y = 3^x$ is the reflection of $y = 3^{-x}$ in the y -axis.



Simple logarithm graphs

We can also draw the graph of $y = \log_2 x$. As usual, we begin with a table of values.

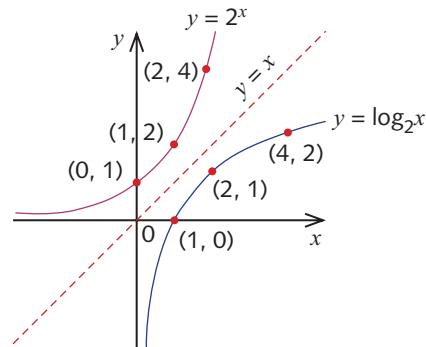
x	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	16
$y = \log_2 x$	-4	-3	-2	-1	0	1	2	3	4



How are the graphs of $y = \log_2 x$ and $y = 2^x$ related?

Here is a table of values of $y = 2^x$. The graphs of $y = 2^x$ and $y = \log_2 x$ are shown on the one set of axes.

x	-4	-3	-2	-1	0	1	2	3	4
$y = 2^x$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	16



If the point (a, b) lies on $y = 2^x$, then $b = 2^a$.

Hence, we can write $a = \log_2 b$, so (b, a) lies on the graph of $y = \log_2 x$.

Thus, each point on $y = \log_2 x$ can be obtained by taking a point on $y = 2^x$ and interchanging the x and y values.

The midpoint of (a, b) and (b, a) is $\left(\frac{a+b}{2}, \frac{b+a}{2}\right)$, and thus always lies on the line $y = x$.

Graphically this means (a, b) is the reflection of (b, a) in the line $y = x$ and vice versa. This is evident in the above pair of graphs.

From this we can list some of the features of the graph of $y = \log_2 x$.

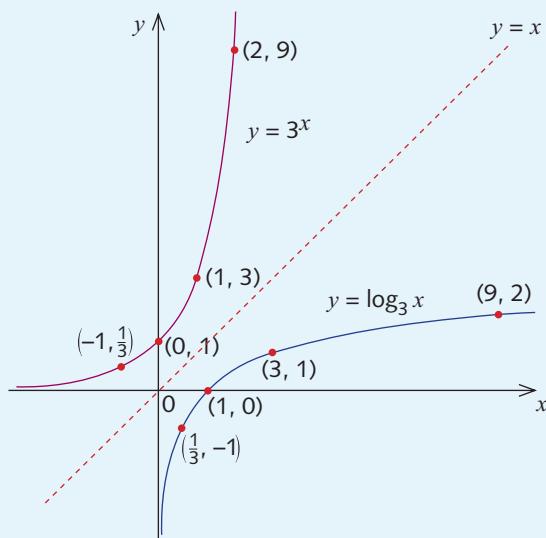
- The graph is to the right of the y -axis. (This is because the function is only defined for $x > 0$.)
- The y -axis is a vertical asymptote to the graph.
- The x -intercept is $(1, 0)$, corresponding to $\log_2 1 = 0$.
- The graph does not have a y -intercept.
- As x takes very large positive values, $\log_2 x$ becomes large positive.
- As x takes very small positive values, $\log_2 x$ becomes large negative.
- The graph is a reflection of $y = 2^x$ in the line $y = x$.

Example 10

Use the graph of $y = 3^x$ to assist in sketching $y = \log_3 x$.

Solution

First draw the graph of $y = 3^x$.



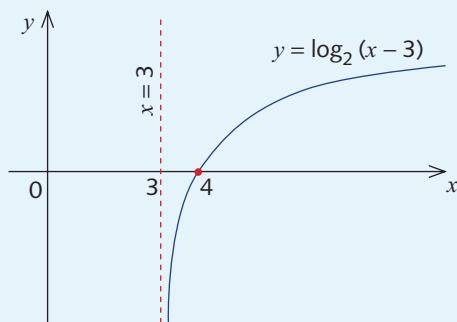
The two graphs are reflections of each other in the line $y = x$.

Example 11

Sketch the graph of $y = \log_2(x - 3)$.

Solution

Translate the graph of $y = \log_2 x$ three units to the right.



Note that the line $x = 3$ is an asymptote to the graph.

Example 12

Sketch the graphs of $y = \log_3 x$ and $y = \log_5 x$ on the same set of axes.

Solution

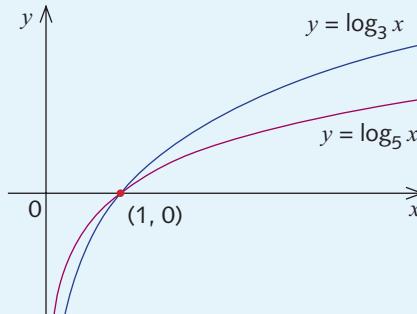
x	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25
$y = \log_3 x$	-2.93	-1.46	0	1.46	2.93
$y = \log_5 x$	-2	-1	0	1	2

$$\log_3 5 = \frac{\log_{10} 5}{\log_{10} 3} \approx 1.46$$

$$\log_3 25 = \log_3 5^2 = 2\log_3 5 \approx 2.93$$

$$\log_3 \frac{1}{5} = -\log_3 5 \approx -1.46$$

$$\log_3 \frac{1}{25} = \log_3 5^{-2} = -2\log_3 5 \approx -2.93$$



The table of values shows that:

$$\log_3 x > \log_5 x \text{ if } x > 1 \text{ and } \log_5 x > \log_3 x \text{ if } 0 < x < 1$$

Exercise 14C

Example 10

- Use the graph of $y = 4^x$ to draw the graph of $y = \log_4 x$.
 - Use the graph of $y = 5^x$ to draw the graph of $y = \log_5 x$.
- For each of these logarithm functions, produce a table of values for (x, y) , using the following y -values: -2, -1, 0, 1, 2. Use the table to draw the graph of the function.

a $y = \log_{10} x$

b $y = \log_6 x$

- Draw each set of graphs on the same axes.

a $y = 3^x$, $y = 3^x + 1$, $y = 3^x - 2$

b $y = 5^x$, $y = 2 \times 5^x$, $y = \frac{1}{2} \times 5^x$

c $y = 2^x$, $y = 2^{-x}$

d $y = \left(\frac{1}{2}\right)^x$, $y = \left(\frac{1}{2}\right)^{-x}$

Example 11

- Sketch the graphs of $y = \log_2 x$ and $y = \log_3 x$ on the same set of axes, for y values between -3 and 3.
 - In what ways are the graphs similar?
 - How do the graphs differ?
 - Without using a table of values, sketch the graph of $y = \log_4 x$ on the same set of axes used in part a.

5 Sketch the following graphs.

a $y = \log_3 x, x > 0$ **b** $y = \log_3(x - 1), x > 1$ **c** $y = \log_3(x + 5), x > -5$
d $y = 2\log_3 x, x > 0$ **e** $y = \log_3(x) + 2, x > 0$

6 Sketch $y = 2^x$, $y = 3^x$, $y = \log_2 x$ and $y = \log_3 x$ on the one set of axes.

14D Applications to science, population growth and finance

In Section 9F of you saw that in a given experiment, the growth in bacteria could be described using an **exponential function**, such as $N = 1000 \times 2^t$.

Here, N is the number of bacteria at time t , measured in hours.

Equations of this type arise in many practical situations in which we know the value of N , but want to solve for t .

Logarithms are needed for such calculations.

Example 13

Initially there are 1000 bacteria in a given culture. The number of bacteria, N , is doubling every hour, so $N = 1000 \times 2^t$, where t is measured in hours.

a How many bacteria are present after 24 hours? Give your answer correct to three significant figures.
b How long is it until there are one million bacteria? Give your answer correct to three significant figures.

Solution

a After 24 hours, $N = 1000 \times 2^{24}$

$$\approx 1.68 \times 10^{10}$$

b If $N = 10^6$, then $10^6 = 1000 \times 2^t$

$$2^t = 1000$$

$$\log_{10} 2^t = \log_{10} 1000$$

$$t \log_{10} 2 = 3$$

$$t = \frac{3}{\log_{10} 2}$$

$$\approx 9.97 \text{ hours}$$

There are one million bacteria after approximately 9.97 hours.

The following example illustrates the use of logarithms in estimating the age of fossils.

Example 14

The carbon isotope carbon-14, C¹⁴, occurs naturally but decays with time. Measurements of carbon-14 in fossils are used to estimate the age of samples.

If M is the mass of carbon-14 at time t years and M_0 is the mass at time $t = 0$, then $M = M_0 10^{-kt}$ where $k = 5.404\ 488\ 252 \times 10^{-5}$.

All 10 digits are needed to achieve reasonable accuracy in these calculations.

- Calculate the fraction left after 100 years as a percentage.
- Calculate the fraction left after 10 000 years as a percentage.
- Calculate the half-life of C¹⁴. That is, after how long does $M = \frac{1}{2}M_0$?

Solution

a When $t = 100$, $M = M_0 10^{-100k}$

$$\begin{aligned}\frac{M}{M_0} &= 10^{-100k} \\ &\approx 0.987\ 63 \\ &\approx 98.76\%\end{aligned}$$

That is, the fraction left after 100 years is 98.76%.

b When $t = 10\ 000$, $\frac{M}{M_0} = 10^{-10\ 000k}$

$$\begin{aligned}&\approx 0.288\ 11 \\ &\approx 28.81\%\end{aligned}$$

That is, the fraction left after 10 000 years is 28.81%.

c $M = \frac{1}{2}M_0$ when $\frac{1}{2} = 10^{-kt}$

$$\begin{aligned}\log_{10} \frac{1}{2} &= -kt \\ kt &= \log_{10} 2 \\ t &= \frac{\log_{10} 2}{k} \\ &\approx 5570.000\ 001 \\ &\approx 5570 \text{ years}\end{aligned}$$

That is, the half-life of C¹⁴ is about 5570 years.

Compound interest

In Section 1D, we introduced the compound interest formula:

$$A_n = P(1 + R)^n$$

where A_n is the amount that the investment is worth after n units of time, P is the principal and R is the interest rate.

Logarithms can be used to find the value of n in this formula given R , P and A_n .

Example 15

\$50 000 is invested on 1 Jan at 8% per annum. Interest is only paid on 1 Jan of each year. At the end of how many years will the investment be worth

a \$75 000? **b** \$100 000?

Solution

a $A_n = P(1 + R)^n$

$A_n = 75\ 000$, $P = 50\ 000$ and $R = 0.08$, so

$$75\ 000 = 50\ 000(1.08)^n$$

$$\frac{3}{2} = (1.08)^n$$

$$\log_{10} \frac{3}{2} = n \log_{10}(1.08) \quad (\text{Take logarithms of both sides.})$$

$$n = \frac{\log_{10}\left(\frac{3}{2}\right)}{\log_{10}(1.08)}$$

$$= 5.268\ 44\dots$$

At the end of the sixth year, the investment will be worth $\$50\ 000(1.08)^6 = \$79\ 343.72$.

At the end of the fifth year, the investment will be worth $\$50\ 000(1.08)^5 = \$73\ 466.40$.

The investment will be worth more than \$75 000 at the end of the sixth year.

b $A_n = P(1 + R)^n$

$A_n = 100\ 000$, $P = 50\ 000$ and $R = 0.08$, so

$$100\ 000 = 50\ 000(1.08)^n$$

$$2 = (1.08)^n$$

$$\log_{10}(2) = n \log_{10}(1.08) \quad (\text{Take logarithms of both sides.})$$

$$n = \frac{\log_{10}(2)}{\log_{10}(1.08)}$$
$$= 9.006\ 46\dots$$

At the end of the tenth year, the investment will be worth $\$50\ 000(1.08)^{10} = \$107\ 946.25$.

At the end of the ninth year, the investment will be worth $\$50\ 000(1.08)^9 = \$99\ 950.23$.

The investment will be worth more than \$100 000 at the end of the tenth year.

Exercise 14D

Example 13

- A culture of bacteria initially has a mass of 3 grams and its mass doubles in size every hour. How long will it take to reach a mass of 60 grams?
- A culture of bacteria initially weighs 0.72 grams and is multiplying in size by a factor of five every day.
 - Write down a formula for M , the weight of bacteria in grams after t days.
 - What is the weight after two days?
 - How long will the culture take to double its weight?
 - The mass of the Earth is about 5.972×10^{24} kg. After how many days will the culture weigh the same as the Earth?
 - Discuss your answer to part d.
- The population of the Earth at the beginning of 1976 was four billion. Assume that the rate of growth is 2% per year.
 - Write a formula for P , the population of the Earth in year t , $t \geq 1976$.
 - What will be the population in 2076?
 - When will the population reach 10 billion?
- The population of the People's Republic of China in 1970 was 750 million. Assume that its rate of growth is 4% per annum.
 - Write down a formula for C , the population of China in year t , $t \geq 1970$.
 - When would the population of China reach two billion?
 - With the assumptions of question 3, when would the population of China be equal to half the population of the Earth?
 - When would everyone in the world be Chinese? (Discuss your answer.)
- The mass M of a radioactive substance is initially 10 g and 20 years later its mass is 9.6 g. If the relationship between M grams and t years is of the form $M = M_o 10^{-kt}$, find:
 - M_o and k
 - the half-life of the radioactive substance
- An amount of \$80 000 is invested on 1 Jan at a compound interest rate of 7% per annum. Interest is only paid on 1 Jan of each year. At the end of how many years will the investment be worth:
 - \$110 000?
 - \$200 000?
- A man now owes the bank \$47 000, after taking out a loan n years ago with an interest rate of 10% per annum. He borrowed \$26 530. Find n .

Example 14

Example 15

8 The formula for the calculation of compound interest is $A_n = P(1 + R)^n$. Find, correct to one decimal place:

- a A_n if $P = \$50\,000$, $R = 8\%$ and $n = 3$
- b P if $A_n = \$80\,000$, $R = 5\%$ and $n = 4$
- c n if $A_n = \$60\,000$, $R = 2\%$ and $P = \$20\,000$
- d n if $A_n = \$90\,000$, $R = 4\%$ and $P = \$20\,000$

Review exercise

1 Calculate each logarithm.

- a $\log_2 16$
- b $\log_5 125$
- c $\log_2 512$
- d $\log_7 1$
- e $\log_3 \frac{1}{27}$
- f $\log_2 \frac{1}{64}$
- g $\log_{10} 10\,000$
- h $\log_{10} (0.001)$

2 Solve each logarithmic equation.

- a $\log_x 16 = 2$
- b $\log_x 64 = 6$
- c $\log_x 2048 = 11$
- d $\log_x 512 = 3$
- e $\log_x 25 = 2$
- f $\log_x 125 = 3$

3 Write each statement in logarithmic form.

- a $1024 = 2^{10}$
- b $10^x = a$
- c $6^0 = 1$
- d $11^1 = 11$
- e $3^x = b$
- f $5^4 = 625$

4 Write each statement in exponential form.

- a $\log_3 81 = 4$
- b $\log_2 64 = 6$
- c $\log_{10} 0.01 = -2$
- d $\log_b c = a$
- e $\log_a b = c$

5 Simplify:

- a $\log_2 11 + \log_2 5$
- b $\log_2 7 + \log_2 5$
- c $\log_6 11 + \log_6 7$
- d $\log_3 8 - \log_3 32$
- e $\log_5 200 - \log_5 40$
- f $\log_5 30 - \log_5 6$

6 Simplify:

- a $\log_2 5 + \log_2 4 + \log_2 7$
- b $\log_5 1000 - \log_5 100 - \log_5 10$
- c $\log_7 7 + \log_7 343 - 3\log_7 49$
- d $\log_3 25 + 2\log_3 5 - 2\log_3 75$

7 Use the change of base formula to convert to base 10 and calculate each to four decimal places.

a $\log_7 11$

b $\log_5 7$

c $\log_3 24$

d $\log_3 35$

e $\log_{16} 8$

f $\log_3 \frac{1}{4}$

8 Solve for x , correct to four decimal places.

a $2^x = 7$

b $3^x = 78$

c $5^x = 28$

d $5^x = 132$

e $2^{-x} = 5$

f $3^{-x} = 15$

9 Solve for x .

a $\log_2(2x - 3) = 4$

b $\log_3 3x = 4$

c $\log_2(3 - x) = 2$

d $\log_{10} x = 4$

e $\log_4(5 - 2x) = 3$

f $\log_2(x - 6) = 2$

10 Sketch each graph.

a $y = \log_5 x, x > 0$

b $y = \log_3(x - 2), x > 2$

c $y = \log_2(x + 4), x > -4$

d $y = \log_2(x) + 5, x > 0$

11 Express y in terms of x when:

a $\log_{10} y = 1 + \log_{10} x$

b $\log_{10}(y + 1) = 2 + \log_{10} x$

12 Simplify $\log_2\left(\frac{8}{75}\right) - 2\log_2\left(\frac{3}{5}\right) - 4\log_2\left(\frac{3}{2}\right)$.

13 If $\log_{10} x = 0.6$ and $\log_{10} y = 0.2$, evaluate $\log_{10}\left(\frac{x^2}{\sqrt{y}}\right)$.

14 a Express $3 + \log_2 5$ as a single logarithm.

b Express $5 - \log_2 5$ as a single logarithm.

15 An amount of \$120 000 is invested on 1 Jan at a compound interest rate of 8% per annum. Interest only paid on 1 Jan of each year. At the end of how many years will the investment be worth:

a \$160 000?

b \$200 000?

Challenge exercise

Throughout this exercise, the bases a and b are positive and not equal to 1.

1 Consider a right-angled triangle with side lengths a , b and c , with c the hypotenuse.

Prove that $\log_{10} a = \frac{1}{2} \log_{10}(c+b) + \frac{1}{2} \log_{10}(c-b)$.

2 Simplify $\log_a(a^2 + a) - \log_a(a + 1)$.

3 Show that $3\log_{10} x + 2\log_{10} y - \frac{1}{2}\log_{10} z = \log_{10}\left(\frac{x^3 y^2}{\sqrt{z}}\right)$.

4 Solve for x :

a $\log_2(x+1) - \log_2(x-1) = 3$
b $(\log_{10} x)(\log_{10} x^2) + \log_{10} x^3 - 5 = 0$
c $(\log_2 x^2)^2 - \log_2 x^3 - 10 = 0$
d $(\log_3 x)^2 = \log_3 x^5 - 6$

5 Solve each set of simultaneous equations.

a $9^x = 27^{y-3}$, $16^{x+1} = 8^y \times 2$
b $8^x = 32^{y+1}$, $5^{x-1} = 25^y$
c $49^{x+3} = 343^{y-1}$, $2^{x+y} = 8^{x-2y}$
d $8^x = 4^y$, $7^{3x+3} = 343^y$

6 Solve the equation $(\log_a x)(\log_b x) = \log_a b$ for x where a and b are positive numbers different from 1.

7 If $a = \log_8 225$ and $b = \log_2 15$, find a in terms of b .

8 a Show that $\log_{10} 3$ cannot be a rational number.

b Show that $\log_{10} n$ cannot be a rational number if n is any positive integer that is not a whole number power of 10.

9 Prove that $\log_a\left(\frac{xy}{z}\right) + \log_a\left(\frac{yz}{x}\right) + \log_a\left(\frac{zx}{y}\right) = \log_a x + \log_a y + \log_a z$.

10 If x and y are distinct positive numbers, $a > 0$ and

$\frac{\log_a x}{y-z} = \frac{\log_a y}{z-x} = \frac{\log_a z}{x-y}$, show $xyz = 1$ and $x^x y^y z^z = 1$.

11 If $2\log_a x = 1 + \log_a(7x - 10a)$, find x in terms of a , where a is a positive constant and x is positive.