
Year 9 Mathematics | Topic 1 | Algebra Revision

PEN Education

October 23, 2023

Contents

1	Substitution	1
2	Like Terms	3
3	Multiplication and Division	5
4	Simple Expansion of Brackets	6
5	Binomial Products	7
6	Perfect Squares	11
7	Difference of Two Squares	12
8	Homework	13
9	The End	15

1 Substitution

What is this?

Definition 1

Pronumeral :=

Definition 2

Numerical Value :=

What do we need to be careful of?

.....
.....

1.1 Examples

(a) Evaluate $2x$ when $x = 3$

.....

(b) Evaluate $5a + 2b$ when $a = 2$ and $b = -3$

.....

(c) Evaluate $2p(3q - 2)$ when $p = 1$ and $q = -2$

.....

(d) Evaluate $7m - 4n$ when $m = -3$ and $n = -2$

.....

(e) Evaluate $a + 2b - 3c$ when $a = 3, b = -5, c = -2$

.....

1.2 Exercises

1. Evaluate $2x - 3y$ when:

(a) $x = \frac{2}{5}, y = -\frac{1}{4}$

.....
.....
.....
.....
.....

(b) $x = \frac{1}{3}, y = \frac{1}{6}$

.....
.....
.....
.....
.....

2. Evaluate $p^2 - 2q$ when:

(a) $p = -7, q = 2$

.....
.....
.....
.....
.....

(b) $p = -\frac{1}{3}, q = \frac{5}{6}$

.....
.....
.....
.....
.....

2 Like Terms

Why should we group like terms?

.....
.....

Give an example of grouping like terms.

.....
.....

2.1 Examples

Which of the following are pairs of like terms?

(a) $3x, 2x$

(c) $3x^2, 3x$

(e) $2mn, 3nm$

(b) $3m, 2c$

(d) $2x^2y, 3yx^2$

(f) $5y^2, 6y^2x$

Simplify each expression if possible:

(a) $4a + 7a = \dots$ (d) $9b + 2c - 3b + 6c = \dots$

(b) $3x^2y + 4x^2 - 2x^2y = \dots$ (e) $3z + 5yx - z - 6xy = \dots$

(c) $5m + 6n = \dots$ (f) $6x^3 - 4x^2 + 5x^3 = \dots$

2.2 Exercises

1. Simplify:

(a) $\frac{x}{2} + \frac{x}{3}$

(b) $\frac{3x}{4} - \frac{2x}{5}$

.....
.....
.....

.....
.....
.....

2. Which of the following are pairs of like terms?

(a) $12m, 5m$

(c) $6ab, -7b$

(b) $-6a, 7b$

(d) $6x^2, -7x^2$

3. Simplify each expression by collecting like terms.

(a) $8b + 3b = \dots$ (b) $6x^2 + 4x^2 = \dots$ (c) $7f - 3f + 9f = \dots$

4. Fill in the missing term.

(a) $8mn + \dots = 12mn$ (b) $6m^2 - \dots = m^2$ (c) $-7a^2b + \dots = a^2b$

5. Simplify by collecting like terms.

(a) $8p + 6 + 3p - 2 = \dots$ (d) $-4x^2 + 3x^2 - 3y - 7y = \dots$
(b) $10ab + 11b - 12b + 3ab = \dots$ (e) $7x^3 + 6x^2 - 4y^3 - x^2 = \dots$
(c) $4p^2 - 3p - 8p - 3p^2 = \dots$ (f) $-3ab^2 + 4a^2b - 5ab^2 + a^2b = \dots$

6. Simplify:

(a) $\frac{c}{6} + \frac{c}{7}$

(c) $c - \frac{c}{7}$

(e) $\frac{5x}{3} + \frac{x}{2}$

.....

(b) $\frac{x}{7} - \frac{x}{8}$

(d) $\frac{2x}{3} + \frac{x}{4}$

(f) $\frac{5x}{11} - \frac{2x}{3}$

.....

.....

3 Multiplication and Division

This part is interesting. In the last section we saw that we could **not** further simplify terms that were different such as $2x + 4y$. But now with multiplication and division we can! $2x \times 4y = 8xy$ and $2x \div 4y = \frac{2x}{4y} = \frac{x}{2y}$. Isn't that cool?

Okay, now you guys try:

3.1 Examples

1. Multiplications

(a) $4 \times 3a = \dots$ (c) $4m \times 5m = \dots$ (e) $3x \times (-6) = \dots$
(b) $2d \times 5e = \dots$ (d) $3p \times 2pq = \dots$ (f) $-5ab \times -3bc = \dots$

2. Divisions

(a) $24x \div 6 = \dots$ (c) $-18x^2 \div (-3) = \dots$ (e) $\frac{12x}{21} = \dots$
(b) $36a \div 4 = \dots$ (d) $\frac{15a}{3} = \dots$ (f) $\frac{-24xy}{6y} = \dots$

3.2 Exercises

1. Rewrite as a single fraction:

$$(a) \frac{2a}{5} \times \frac{a}{4} = \dots \quad (c) \frac{4p}{q} \times \frac{3}{2p} = \dots \quad (e) \frac{2x}{3} \div \frac{3x}{5} = \dots$$

$$(b) \frac{3x}{7} \times \frac{5y}{12} = \dots \quad (d) \frac{15}{x} \times \frac{2}{3x} = \dots \quad (f) \frac{6a}{7b} \div \frac{2ab}{3} = \dots$$

2. Simplify

$$(a) 5c \times 2d = \dots \quad (c) -2m \times (-4m) = \dots \quad (e) 7 \times 15p \div 21 = \dots$$

$$(b) -6l \times (-5m) = \dots \quad (d) 24a^2 \div 8 = \dots \quad (f) 18y \div 6 \times 2 = \dots$$

3. Simplify by first cancelling out common factors:

$$(a) \frac{14p}{21} = \dots \quad (c) \frac{2xy}{6xy} = \dots \quad (e) \frac{2y}{5} \times \frac{y}{4} = \dots \quad (g) \frac{2yz}{5xy} \times \frac{3xy}{4yz} = \dots$$

$$(b) \frac{22x^2}{33} = \dots \quad (d) \frac{-4xy}{8x} = \dots \quad (f) \frac{p}{6q} \times \frac{9p}{4q} = \dots \quad (h) \frac{2y}{5} \div \frac{y}{4} = \dots$$

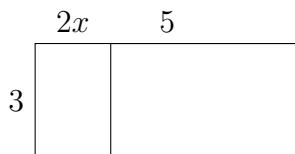
4 Simple Expansion of Brackets

Often times algebraic concepts have a geometric meaning too. You've now done enough arithmetic with pronumerals to be able to learn this secret of the universe.

Consider $3(2x + 5)$. You can expand this by distributing the 3 to each term in the brackets like so:

$$(3)(2x + 5) = 6x + 15 \quad (1)$$

Or you can think about this as having some kind of original rectangle with dimensions 3 by $2x$ and then extending the width by 5.



Now finding the area of the enlarged shape is algebraically equivalent to $3(2x + 5)$ and often times expanding this will make substitution easier if you know what the value of x is!

These kinds of expansions are the backbone of mathematics and becoming proficient at these will help you simplify harder problems. Let's get better at expanding:

4.1 Examples

1. Expand:

$$(a) 2(a + 3) = \dots \quad (b) 3(x - 2) = \dots \quad (c) 4(2m - 7) = \dots$$

2. Now try:

$$(a) 5(a + 1) + 6 = \dots \quad (b) 4(2b - 1) + 7 = \dots \quad (c) 6(d + 5) - 3d = \dots$$

3. Can you handle some more terms?

$$(a) 2(b + 5) + 3(b + 2) = \dots \quad (b) 3(x - 2) - 2(x + 1) = \dots$$

4.2 Exercises

Have a go at these ones yourselves:

1. $\frac{3}{5}(6x + \frac{7}{3}) = \dots$	6. $-\frac{4}{5}(25m - 100) = \dots$
2. $\frac{4}{3}(6x + 11) + \frac{2}{3} = \dots$	7. $\frac{3}{5}(\frac{x}{6} + \frac{1}{3}) = \dots$
3. $-12(4y - 5) = \dots$	8. $-\frac{3}{5}(\frac{a}{3} - \frac{2}{3}) = \dots$
4. $\frac{2}{3}(12p + 6) = \dots$	9. $c(c - 5) = \dots$
5. $-\frac{1}{2}(10d - 6) = \dots$	10. $2i(5i + 7) = \dots$

5 Binomial Products

Welcome to some respectable mathematics. Binomials look like this: $(x + \text{something})(y + \text{something else})$. We are going to learn how to expand any variant of these, and then we will look at the special cases when x and y are the same and the *something*'s are also the same; i.e. $(x + a)(x + a)$. (There is a quick trick for solving these). Then we shall conclude the class with the second special case of the binomials - *The Difference of Two Squares*. They come in the shape of $(x + a)(x - a)$, and also can be easily expanded with a trick!

Before we get stuck in to the expansion tricks, let's make sure we understand what we are expanding.

What does the prefix **bi** mean?

Examples of ‘bi’ things include

Thus a **binomial** means

Now let us expand $(a + 2)(b + 5)$. You just need to distribute each term in the first brackets with every term of the next set of brackets.

$$(a + 2)(b + 5) = ab + 2b + 5a + 10 \quad (2)$$

If at first you are struggling to remember the steps, just remember the acronym **FOIL**, **F**irst **O**utside **I**nside **L**ast.

Once again this has a geometric interpretation:

	a	2
b	ab	$2b$
5	$5a$	10

And the area can now be computed by adding all the parts: $ab + 2b + 5a + 10$, which is what our algebraic expansion told us too!

5.1 Examples

1. Expand the following:

(a) $(x + 4)(x + 5) =$

(c) $(x - 4)(x - 3) =$

.....
.....

.....
.....

(b) $(x + 3)(x - 2) =$

(d) $(2y + 1)(3y - 4) =$

.....
.....

.....
.....

5.2 Exercises

(a) $(a + 3)(a + 9) =$

.....
.....

(g) $(4m + 3)(2m - 1) =$

.....
.....

(b) $(a + 8)(9 + a) =$

.....
.....

(h) $(2x - 7)(3x - 1) =$

.....
.....

(c) $(p - 6)(p + 4) =$

.....
.....

(i) $(2b + 3)(4b - 2) =$

.....
.....

(d) $(x + 3)(x - 8) =$

.....
.....

(j) $(4c + d)(2c - 3d) =$

.....
.....

(e) $(x + 7)(x - 4) =$

.....
.....

(k) $(3x - y)(2x + 5y) =$

.....
.....

(f) $(5x + 1)(x + 2) =$

.....
.....

(l) $(2p - 5q)(3q - 2p) =$

.....
.....

6 Perfect Squares

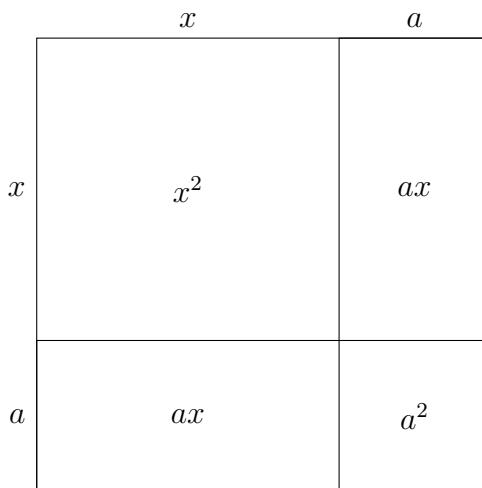
This is one of the special cases mentioned earlier. Our general binomial looks like $(x + a)(y + b)$, but perfect squares are easier and look like $(x + a)(x + a)$ which can then be simplified to be $(x + a)^2$.

Remember the trick mentioned earlier? This is it:

1. Take the first term, square it
2. Take the last term, square it
3. Multiply all the terms with each other

Thus we have $(x + a)^2 = x^2 + 2ax + a^2$. Simple as that.

Here is the geometric intuition:



We take a square of x units and extend it to a square of length $x + a$:

6.1 Examples

Let's only do a few examples this time. We'll come back and do more practise after covering *differences of two squares*.

1. $(x - 5)^2 = \dots$
2. $(x + 7)^2 = \dots$
3. $(3x - 1)^2 = \dots$

7 Difference of Two Squares

We shall cover this one quickly so you have time to do a brick of exercises after :D. Difference of Two Squares are the second special case of the **binomial** expansion, and come in the form $(x + a)(x - a)$. Expanding this out with our usual **FOIL** method gives $x^2 + ax - ax - a^2$ which just leaves $x^2 - a^2$; how convenient!

This time I will leave the geometric intuition as an exercise, feel free to come to me before next class to explain your ideas!

7.1 Exercises

1. Let's practise:

(a) $(x - 5)(x + 5) =$

.....
.....

(b) $(3x - 4)(3x + 4) =$

.....
.....

(c) $(a + b)(a - b) =$

.....
.....

2. Now back to perfect squares:

(a) $(x + 1)^2 =$

.....
.....

(c) $(2 + x)^2 =$

.....
.....

(b) $(x + 5)^2 =$

.....
.....

(d) $(x + 20)^2 =$

.....
.....

3. Try a mix now:

(a) $(3x - 2)(3x + 2) =$

.....

.....

.....

(d) $(5a + 2b)(5a - 2b) =$

.....

.....

.....

(b) $(3a - 4b)^2 =$

.....

.....

.....

(e) $(\frac{x}{2} + 3)^2 =$

.....

.....

.....

(c) $(2x + 3y)^2 =$

.....

.....

.....

(f) $(3c - b)^2 =$

.....

.....

.....

8 Homework

Please attempt every question in your exercise books!

1. Evaluate $2m(m - 3n)$ when:

(a) $m = 3, n = 5$ (b) $m = -3, n = -2$ (c) $m = \frac{1}{3}, n = \frac{1}{2}$

2. Evaluate $\frac{p+2q}{3r}$ when $p = 7, q = -2, r = 2$

3. Evaluate $\frac{x+y}{3}$ when $x = -6, y = -5$

4. Fill in the missing term:

(a) $2a + \dots = 7a$ (b) $5m^2 - \dots = -6m^2n$ (c) $-6lm + \dots = lm$

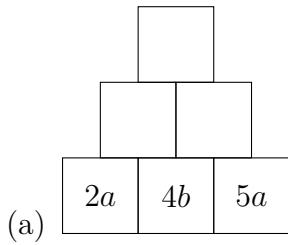
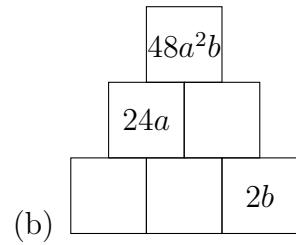
5. Simplify by collecting like terms:

(a) $9a^2 + 5a^2 - 12a^2$ (c) $17m^2 - 14m^2 + 8m^2$ (e) $7x^3 + 6x^2 - 4y^3 - x^2$
(b) $14a^2d - 10a^2d - 6a^2d$ (d) $-4x^2 + 3x^2 - 3y - 7y$ (f) $-3ab^2 + 4a^2b - 5ab^2 + a^2b$

6. Simplify

(a) $4a \times 3b$ (d) $3 \times 12t \div 9$ (g) $\frac{12ab}{4a}$ (j) $\frac{3x}{5} \div \frac{3}{4}$
(b) $-2p \times (-3q)$ (e) $24x \div 8 \times 3$ (h) $\frac{3x}{5} \times \frac{2}{3}$ (k) $\frac{9y}{2} \div 18$
(c) $27y \div 3$ (f) $-\frac{12m}{18}$ (i) $\frac{2}{5a} \times \frac{1}{4a}$ (l) $\frac{5p}{6} \div (-\frac{10p}{3})$

7. Fill in the missing boxes. Each box contains the product of the 2 boxes below it.



8. Expand:

(a) $b(b + 7)$

(c) $-k(5k - 4)$

(e) $4c(2c - d)$

(g) $3p(2 - 5pq)$

(b) $4h(5h - 7)$

(d) $-4x(3x - 5)$

(f) $-3x(2x + 5y)$

(h) $-10b(3a - 7b)$

9. Expand and collect like terms

(a) $\frac{1}{4}(x + 2) + \frac{x}{3}$

(c) $-\frac{1}{2}(3x + 2) - \frac{2x}{5}$

(e) $2p(3p + 1) - 4(2p + 1)$

(b) $\frac{3}{7}(3x + 5) + \frac{x}{3}$

(d) $2p(3p + 1) - 5(p + 1)$

(f) $4z(4z - 2) - z(z + 2)$

10. Expand:

(a) $(x - 6)(x - 4)$

(c) $(4x + 3)(2x - 1)$

(e) $(x + 3)(x + 3)$

(g) $(2x + 3)(2x + 3)$

(b) $(4x + 1)(3x - 1)$

(d) $(x - 4)(2x + 5)$

(f) $(2x - 5)(x + 3)$

(h) $(\frac{2b}{3} + 2)(\frac{b}{5} - 2)$

11. Fill in the blanks:

(a) $(x + 5)(\dots \dots \dots) = x^2 + 8x + 15$

(d) $(x + \dots \dots \dots)(x + 6) = x^2 + 9x + \dots \dots \dots$

(b) $(x + 3)(\dots \dots \dots) = x^2 - 2x - 15$

(e) $(2x + 3)(\dots \dots \dots) = 2x^2 + 7x + \dots \dots \dots$

(c) $(3x + 4)(\dots \dots \dots) = 3x^2 + x - 4$

(f) $(\dots \dots x - 3)(\dots \dots x 5 \dots \dots) = 12x^2 - x - 6$

12. Expand

(a) $(x - 7)^2$

(b) $(a + 8)^8$

(c) $(9 + x)^2$

(d) $x - 11)^2$

13. Expand

(a) $(\frac{2x}{5} - 1)^2$

(b) $(\frac{3x}{4} + \frac{2}{3})^2$

14. Evaluate the following using $(a + b)^2 = a^2 + 2ab + b^2$ and $(a - b)^2 = a^2 - 2ab + b^2$.

(a) $(1.01)^2$

(b) $(0.99)^2$

(c) $(4.01)^2$

15. Expand and collect like terms

(a) $(x - 2)^2 + (x - 4)^2$

(c) $x^2 + (x + 1)^2 + (x + 2)^2 + (x + 3)^2$

(b) $(2x + 5)^2 + (2x - 5)^2$

(d) $(\frac{x}{2} + 1)^2 + (\frac{x}{2} - 1)^2$

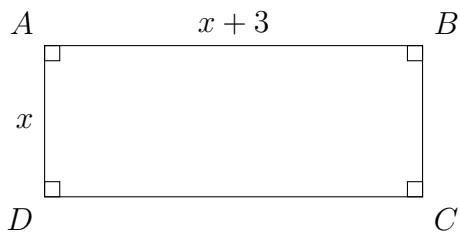
16. Expand

- (a) $(z - 7)(z + 7)$
- (b) $(10 - x)(10 + x)$
- (c) $(3x - 2)(3x + 2)$
- (d) $(\frac{x}{2} + 3)(\frac{x}{2} - 3)$

- (e) $(\frac{x}{3} + \frac{1}{2})(\frac{x}{3} - \frac{1}{2})$
- (f) Is $a^2 - 2a + 1$ a perfect square expansion or a difference of 2 squares?

8.1 Challenge Problems

1. (a) Show that the perimeter of the rectangle is $(4x + 6)$ cm
- (b) Find the perimeter if $AD = 2$ cm
- (c) Find x if the perimeter = 36cm
- (d) Find the area of $ABCD$ in terms of x
- (e) Find the area of the rectangle if $AB = 6$ cm



2. Expand and collect:

- (a) $(x - 1)(x^2 + x + 1)$
- (b) $(x - 1)(x^4 + x^3 + x^2 + x + 1)$
- (c) What do you expect the result of expanding $(x - 1)(x^9 + x^8 + \dots + 1)$ will be?

9 The End

