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1. Definitions

order = the power the differential is raised to. ]
linear = the dependent variable and it’s derivatives are all not non-linear. ]
Ty s WA
dt dz  dt d#3 <z dz
g _— (1)

linear linear non-linear non-linear non-linear

autonomous = independent variable does not appear in the equation

non-autonomous = independent variable does appear in the equation

ansatz = our initial guess for the form of a solution, i.e. ,, = A COS(t) + B sin(t)

indicial equation = a quadratic equation that pops out during the application of the
Frobenius method

analytic = a function is analytic at a point if it can be expressed as a convergent power series
in a neighborhood of that point

ordinary point = when p(x) and q (ZE) are analytic at that point

’ regular singular point = ifP(a;) = (ac — xo)p(:c) and Q(m) = (1: — x0)2q(x)
are both analytic at Z.

irregular singular point = not regular.

mean convergence = a sequence of functions fn converges in mean to f on [a, b] if

. b
hmn—)oo fa |fn(ac) - f(!l))|2 dz =0

pointwise convergence = a sequence of functions fn converges pointwise to f on [a, b] if
lim, fn(w) = f(x) for every & € [a, b]

uniform convergence = a sequence of functions fn converges uniformly to f on [a, b] if

limn—)oo Supwe[a,b]|fn(w) _ f($>| =0




Equilibrium Points and Stability

equilibrium point = a point where the derivative of the dependent variable with respect to
the independent variable is zero

stable node = trajectories approach the equilibrium point from all directions and eigenvalues
are real and negative

____________________________________________________________________________

unstable bicritical node ("star") = trajectories move away from the equilibrium point in all
directions and eigenvalues are real and positive

____________________________________________________________________________

stable centre = trajectories orbit around the equilibrium point with eigenvalues that are
purely imaginary

____________________________________________________________________________

unstable saddle point = trajectories approach the equilibrium point in one direction and
move away in another, with eigenvalues having opposite signs

____________________________________________________________________________

unstable focus = trajectories spiral away from the equilibrium point with eigenvalues having
positive real parts and non-zero imaginary parts

____________________________________________________________________________



2. Solving Methods

2.1. First Order

2.1.1. standard form

dy
== 2
o = @Y (2)
2.1.2. separable
Y — s = [ = [ fe)do g
dz 9(y)
2.1.3. reduction to separable
dy y
< _flZ 4
2—1(Y) @
with substitution: y(x) = zv(x)
2.1.4. linear standard form
d
— +p()y = q(a) (5)
2.1.4.1. integrating factor
note, the coefficient of y’(z) must be 1.
o) = exp( [ plo)a) )

multiplying the Linear Standard Form 5 with ¢(z) yields:
d
6w = o(@)a(z) = y =07 [ dala) do @

2.1.5. exact
A first-order ODE is exact if it can be written in the form:

M(z,y)dz + N(z,y)dy =0 (8)
where %—M = %—];7. The solution is then given by: F(x,y) = C where F(x,y)
satisfies 3£ = M(z, y) and %—I; = N(z,y)



2.2. Second Order

2.2.1. standard form
y" +p(x)y’ +q(x)y = r(z)

2.2.2. reducible to first order

with substitution p = %

2.2.3. constant coefficients

when p(z) and ¢(x) are constants:
y//+a1y/+a0y:0

2.2.3.1. homogenous

solve the characteristic equation:

cases:

« A, Ay are real and distinct

» A, A\, are real and coincide (same)
« A\, Ay are complex conjugates

in each case, the solution of y(x) becomes:
* y(z) = Cexp(A;z) + Dexp(Ay2)
« y(x) = Cexp(Ajz) + Dxexp(A )

. y(z) = Cexp(ax) cos(fzx) + D exp(azx) sin(fx)
= exp(ax)(Acos(fz) + Bsin(8z)) by DeMoivre's Theorem

2.2.3.2. inhomogenous — method of undetermined coefficients

Y(T) = Yn(a) T Yp(a)

guesses for y,,:

» forr(z) = F,(;) (polynomial of degree n), try y,,) = Q

6
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(13)

(14)

(15)



for r(z) = €%, try y,(,) = Ae®®
for r(z) = sin(Bz) or r(z) = cos(Bz), try y,,,) = Asin(8z) + B cos(Bz)
for products of the above forms, try products of the corresponding forms

if Y, () 1s already a solution of the homogeneous equation, multiply by = or

x* until linearly independent

2.2.4. variation of parameters
This method works for any 2nd order inhomogenous ODE if the
complementary solution is known.

Theorem. The general solution of the 2nd order inhomogenous ODE:
Y’ + b1 (2)y’ + by(z)y = f(=) (16)

is given by y(z) = u (2)y, (¢) + uy(2)y,(2)

where y; and y, are linearly independent solutions of the homogenous
ODE such that the Wronskian W (z) # 0 and

w() = | %dx (17)

and

2.2.5. power series method
note, that we embark on this approach because the second order standard
form 2.2.1 is not solveable in general with elementary functions!

pick ansatz of the form

Yy = ianz“ (19)
n=0

and take derivatives as required. for example:

dy & APy &
L 1= Y —1)a, 22 20
P nz::l na,, z 12 nz:; n(n a,z (20)



and substitute them into the ODE. Then solve by rearranging indices as
necessary to obtain a recurrence relation. Apply the initial conditions and then
guess the closed-form solution of the recurrence relation. Change back to the
original variables if required.

If z is an ordinary point Section 1 of the differential equation
y" +p(@)y +q(x)y =0 (21)

then the general solution in a neighbourhood | — x| < R may be
represented as a power series.

2.2.6. method of frobenius

Theorem. If x, = 0 is a regular singular point of the differential
equation

y" +p(x)y +q(z)y =0 (22)
then there exists at least one series solution of the form
o0 o0
y(@) =a" Y c,a™ =)yt o # 0 (23)
n=0 n=0

for some constant r (index).

2.2.6.1. general indicial equation
r(r—1)+pyr+qy =0 (24)

2.3. n order

admits n linearly independent solutions.

2.3.1. power series expansion (not sure if it works for n order)

For an n'" order linear ODE with variable coefficients:
Uy ¥™ + a, (@)Y 4+ a4y (2)y + ag(z)y = f() (25)

We assume a solution of the form:

0. ¢}

y(@) =Y cplz— )" (26)

k=0



Taking derivatives and substituting yields a recurrence relation for coefficients

¢ typically allowing us to determine c,, in terms of ¢y, ¢q, ..., c,,_;.

2.3.2. reduction of order

any n'® order ODE can be formulated as a system of n first order ODE’s.
For (™) = f(a:, VIR TR y(n_l)), sety, =y~ fori = 1,2, ..., n to obtain:

Y = Yit1 (27)
fori=1,2,....n—1

Y = (T, Y1, Y25 5 Un) (28)



2.4. partial differential equations

2.4.1. standard form (linear, homogenous, 2nd order pde)

2 2 2
AM+B8U +C@u+D(8'u,)+E((9u)

Fu —
0x? 0xdy 0y? Ox Oy +Fu=0

parabolic equation: B2 — 4AC = 0 (Heat Equation 4.11)
hyperbolic equation: B2 — 4AC > 0 (Wave Equation 4.12)
elliptic equation: B> — 4AC < 0 (Laplace Equation 4.13)

2.4.2. separation of variables

U(z,y) = X(z)Y (y)

(29)

(30)

then U, = Y X’ and U, = Y’ X rewrite the PDE with these substitutions, then

divide through by XY Integrate and solve.

2.4.3. change of variables

When a PDE is difficult to solve directly, changing variables can transform it

into a simpler form.

For a second-order PDE, the transformation u = u(§, n) where £ = £(x,y) and

n = n(zx,y) requires computing:

ou Oudf¢ Ou @

oz 9E0x | onom
Oou Oudé Oudn

dy  9Edy  anoy

(31)

(32)

And similarly for second-order derivatives. The canonical transformations are:

« For hyperbolic: £ = = + y,n = © — y (characteristic coordinates)

« For parabolic: £ = x,n7 = y — f(x) (transformation along characteristics)

« For elliptic: ¢ = = + iy, n = ¢ — iy (complex characteristics)

3. systems / dynamical systems
« Ay < A; < 0= stable node

0 < A; < A, = unstable node

A1 = Ay, A\; > 0 = unstable star

A = Ay, A} < 0 = stable star

A; < 0 < Ay = unstable saddle node

10



« R(\;) = 0 = centre, stable
« R(A;) < 0 = stable focus
« BR(A;) > 0 = unstable focus

real canonical form For a linear system & = A, the real canonical form
depends on the eigenvalues of A:

Real distinct eigenvalues A; # Ay:

_ (MO
Acanonical - (0 )\2) (33)

Real repeated eigenvalues A\; = A\, with linearly independent eigenvectors:

_ (M O
Acanonical - (0 )\1) (34)

Real repeated eigenvalues A\; = A\, with one linearly independent
eigenvector:

_ )‘1 1
Acanonical - (O )\1) (35)

Complex conjugate eigenvalues A = a 4 i3:

Acanonical = (_O‘B g) (36)
4. functions
4.1. wronskian
fi(z) folz) . fn(x)
/(x) /() /()
Wi foenf)@) = | D e (37)

(D) (g) g D(z) L 0D ()

note that if a set of functions is linearly dependent, then its Wronskian will
equal 0.

11



4.2. power series, taylor series and maclaurin series
expansions

Power Series

oo (T —a)"

Taylor Series
ZOO f™(a) (z —a)"

Maclaurin

Series
ZOO £™(0) "

Figure 1: Relationship between power series, Taylor series, and Maclaurin
series, showing proper subset relationships

4.3. orthogonality
A set of functions {¢, } _ .
with respect to the inner product defined by

is said to be orthogonal on the interval [a, b]

b
(F,9)0 = / w(z) f(2)g(z) dz (38)

with weight function w(z) > 0, if (¢,,, ¢,,,) = 0 for m # n.

4.4. orthonormality

a set {qbn}n: | 55 is orthonormal when in addition to being Section 4.3,
(¢, P,) =1,forn=1,23,....

12



4.5. cauchy-euler
/4

z?y” + a;zy’ + ayy = 0 you can solve this by either letting z = e’ or using

the ansatz y = z” the characteristic equation is A2 + (a; — 1)\ + ay = 0 if

you are blessed with the inhomogenous case of above, just use method of

undetermined coefficients Section 2.2.3.2.

4.6. legendre

legendre’s (differential) equation
(1—2?)y” — 22y +n(n+1)y=0
legendre’s polynomials

4.7. bessel

bessel’s differential equation
y'r? +xy + (22 — 1)y =0

bessel function of the first kind of order a:

e (_1)m T\ 2m+ta
Jom=S ") r 1)(3)
a(z) TnZ:()F(m+1) (m+a+1) 2

implies

d (0% (0%

ax [x Ja(w)] = Ja—l('x)
implies

/ " J,_q(x)dz = 1r"J,

0
forn=1,2,3, ...

thus the de admits solutions case 1: 2v ¢ Z
y(x) = AJ,(x) + BJ_,(2)

J,

v

(x), J_,(x) linearly independent case 2: 2v € Z
y(z) = AJ,(z) + BJ_,(x)

case 3:v € Z J,(x), J_,(x) linearly independent

13
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y(z) = AJ,(z) + BY, () (46)

4.8. laguerre’s equation
zy” + (1—=z)y’ +ny=0 (47)

4.9. hermite’s equation
y" —2xy +2ny =0 (48)

4.10. sturm-liouville form
(py') + (g +Ar)y=0 (49)

note that Bessel 4.7, Laguerre 4.8, Hermite 4.9 and Legendre 4.6 equations can
all be written in this form. furthermore, any 2nd order linear homogenous
ODE y” + a4 (z)y" + [ag(x) + Aas(z)]y = 0 may be written in this form.

4.11. heat equation (pde)
o*u  Ou

% = ot (50)
4.12. wave equation (pde)
0%u 1 0%u
9%~ 2 or 51)
4.13. laplace’s equation (pde )
0%u  0%u
72 T 5 =0 (52)
4.14. fourier series
N
— _0
=3 ; a,, cos(nx) + b, sin(nx)) (53)
%/ ) cos(nx)dx,n =0,1,2,. (54)
%/ )sin(nz)dx,n =1,2,. (55)

14



4.15. parseval’s identity

Hf||2 /fz =%y £3 (a2 1 82)
n=1

15
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