# **Scalar Valued Functions**

# Aayush Bajaj

Version 0.1

## 2025-05-15

#### Abstract

Whilst the author believes the raison d'être of this manuscript is obvious, they do not believe that the scope is.

The *Theory of Functions* is rich and central to Mathematics. As such, we limit our scope here to definitions and graphs of univariate functions  $f : \mathbb{R} \to \mathbb{R}$ . Whilst we include common equalities between different functions - say circular and exponential - what you will not find here are derivations of any sort. You will **not** find proofs **nor** set theoretic discussions of "jectivities", binary relations, etc. Furthermore there is a purposeful lack of rigour in this / catalogue/; theorems are asserted as is, with no warranty and no proof. Finally, analytic concerns of limits and convergence are also dutifuly ignored.



# Table of Contents

| 1.             | Elementary          |                   |                           |  |
|----------------|---------------------|-------------------|---------------------------|--|
|                | 1.1.                | 1.1. Algebraic    |                           |  |
|                |                     | 1.1.1.            | Polynomials 3             |  |
|                |                     | 1.1.2.            | Rational 3                |  |
| 1.1.3. Power   |                     | Power             |                           |  |
|                | 1.2.                | 2. Transcendental |                           |  |
|                |                     | 1.2.1.            | Exponential 3             |  |
|                |                     | 1.2.2.            | Logarithm 4               |  |
|                |                     | 1.2.3.            | Trigonometric 4           |  |
|                |                     | 1.2.4.            | Inverse Trig 4            |  |
|                |                     | 1.2.5.            | Reciprocal Trig 4         |  |
|                |                     | 1.2.6.            | Hyperbolic 4              |  |
|                |                     | 1.2.7.            | Inverse Hyper 4           |  |
|                |                     | 1.2.8.            | Reciprocal Hyper 4        |  |
|                |                     | 1.2.9. Factorial  |                           |  |
| 2.             | Non                 | Non-Elementary    |                           |  |
|                | 2.1. Transcendental |                   |                           |  |
|                |                     | 2.1.1.            | Gamma 5                   |  |
|                |                     | 2.1.2.            | Beta 5                    |  |
|                |                     | 2.1.3.            | Riemann Zeta 5            |  |
|                |                     | 2.1.4.            | Error 5                   |  |
|                |                     | 2.1.5.            | Tetration 5               |  |
|                |                     | 2.1.6.            | Elliptic Integrals 5      |  |
|                |                     | 2.1.7.            | Trigonometric Integrals 5 |  |
|                |                     | 2.1.8.            | Fresnel 5                 |  |
| 2.2. Algebraic |                     | raic              |                           |  |
|                |                     | 2.2.1.            | Bessel 5                  |  |
|                |                     | 2.2.2.            | Hypergeometric 5          |  |
| 3.             | Disc                | Discontinuous     |                           |  |
|                | 3.1.                | 1. Absolute Value |                           |  |
|                | 3.2.                | 3.2. Step         |                           |  |
|                |                     | 3.2.1.            | Heaviside                 |  |
|                |                     | 3.2.2.            | Floor                     |  |
|                |                     | 3.2.3.            | Ceiling                   |  |
|                |                     | 3.2.4.            | Square Wave 7             |  |

# 1. Elementary

These such functions are continuous on their domains and include taking **sums**, **products**, **roots** and **compositions** of finitely many <u>algebraic</u> or <u>transcendental</u> functions.

# 1.1. Algebraic

## 1.1.1. Polynomials

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_0 = \sum_{k=0}^n a_k x^k \tag{1}$$

### 1.1.2. Rational

Much in the same way that  $\mathbb{Q}$  is defined as any element  $\frac{a}{b}$  where  $a, b \in \mathbb{Z}$ :



a function f is called a rational function if it can be written in the form:

$$f(x) = \frac{P(x)}{Q(x)} \tag{2}$$

where P(x) and Q(x) are polynomial functions of x and Q is not the zero function.

#### 1.1.3. Power

Note that  $\sqrt{x}$  is not a polynomial because  $\sqrt{x} = x^{\frac{1}{2}}$  and  $\frac{1}{2} \notin \mathbb{Z}$ .

# 1.2. Transcendental

These are the analytic functions that **do not** satisfy a polynomial equation.

#### 1.2.1. Exponential

$$e = \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^n \tag{3}$$

furthermore,

## 1. Elementary

$$\exp(x) = \lim_{n \to \infty} \left( 1 + \frac{x}{n} \right)^n \tag{4}$$

graphically we have:

and by Euler's identity we have:

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \tag{5}$$

which relates the "circular" functions cosine and sine with the "exponential"  $\square$ 

## 1.2.2. Logarithm

setting  $y = e^x$  and swapping variables:  $x = e^y \Longrightarrow y = \ln(x)$ . as such the logarithm and exponential functions are inverses of each other.

# 1.2.3. Trigonometric

- 1.2.4. Inverse Trig
- 1.2.5. Reciprocal Trig
- 1.2.6. Hyperbolic

1.2.7. Inverse Hyper

# 1.2.8. Reciprocal Hyper

**1.2.9. Factorial** x! and  $\frac{1}{x!}$ 

# 2. Non-Elementary

# 2.1. Transcendental

- 2.1.1. Gamma
- 2.1.2. Beta
- 2.1.3. Riemann Zeta
- 2.1.4. Error

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\Pi}} \int_0^x e^{(-t)^2} dt$$
 (6)

#### 2.1.5. Tetration

## 2.1.6. Elliptic Integrals

#### 2.1.7. Trigonometric Integrals

$$\operatorname{Si}(x) = \int_0^x \frac{\sin(t)}{t} \,\mathrm{d}t \tag{7}$$

$$\operatorname{si}(x) = -\int_{\infty}^{x} \frac{\sin(t)}{t} \,\mathrm{d}t \tag{8}$$

$$\operatorname{Si}-\operatorname{si} = \frac{\Pi}{2} = \int_0^\infty \frac{\sin(t)}{t} \,\mathrm{d}t \tag{9}$$

label as Dirichlet's integral

## 2.1.8. Fresnel

$$S(x) = \int_0^x \sin(t^2) dt, C(x) = \int_0^x \cos(t^2) dt$$
 (10)

# 2.2. Algebraic

#### 2.2.1. Bessel

## 2.2.2. Hypergeometric

$$B_0 + B_1 z + B_2 z^2 + \ldots = \sum_{n \ge 0} B_n z^n$$
(11)

where the ratio of successive coefficients is a rational function of n:

# 2. Non-Elementary

$$\frac{\mathbf{B}_{n+1}}{\mathbf{B}_n} = \frac{A(n)}{B(n)} \tag{12}$$

# 3. Discontinuous

# 3.1. Absolute Value

3.2. Step

3.2.1. Heaviside

3.2.2. Floor

3.2.3. Ceiling

3.2.4. Square Wave