


Appendix A
Notation and Set Theory

See van Dalen et al. [118], Halmos [55], Hrbacek and Jech [63], or Moschovakis
[90] for further information on the topics discussed in this appendix.

A.1. Let A and B be sets. We write x ∈ A, x /∈ A, and A ⊆ B to indicate that x is a
member of A, that x is not a member of A, and that A is a subset of B, respectively.
We will denote the union, intersection, and difference of A and B by A∪B, A∩B,
and A−B, respectively (of course A−B = {x : x ∈ A and x /∈ B}). In case we are
dealing with subsets of a fixed set X , the complement of A will be denoted by Ac;
thus Ac = X −A.

The empty set will be denoted by ∅.
The symmetric difference of the sets A and B is defined by

A�B = (A−B)∪ (B−A).

It is clear that A�A = ∅ and that A�B = Ac �Bc. Furthermore, x belongs to
A� (B�C) if and only if it belongs either to exactly one, or else to all three, of A,
B, and C; since a similar remark applies to (A�B)�C, we have

A� (B�C) = (A�B)�C.

Suppose that A1, . . . , An is a finite sequence of sets. The union and intersection
of these sets are defined by

n⋃

i=1

Ai = {x : x ∈ Ai for some i in the range 1, . . . , n}

and
n⋂

i=1

Ai = {x : x ∈ Ai for each i in the range 1, . . . , n}
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374 A Notation and Set Theory

The union and intersection of an infinite sequence {Ai}∞
i=1 of sets, written ∪∞

i=1Ai

and ∩∞
i=1Ai respectively, are defined in a similar way. (To simplify notation we will

sometimes write ∪iAi in place of ∪n
i=1Ai or ∪∞

i=1Ai, and ∩iAi in place of ∩n
i=1Ai or

∩∞
i=1Ai.)

The union and intersection of an arbitrary family S of subsets of a set X are
defined by

∪S = {x ∈ X : x ∈ S for some S in S }
and

∩S = {x ∈ X : x ∈ S for each S in S }.
De Morgan’s laws hold: (∪S )c = ∩{Sc : S ∈ S } and (∩S )c = ∪{Sc : S ∈ S }.
The set of all subsets of the set X is called the power set of X ; we will denote it

by P(X).

A.2. We will use N, N0, Z, Q, R, and C to denote the sets of positive integers, of
nonnegative integers, of integers (positive, negative, or zero), of rational numbers,
of real numbers, and of complex numbers, respectively. The subintervals [a,b] and
(a,b) of R are defined by

[a,b] = {x ∈ R : a ≤ x ≤ b}
and

(a,b) = {x ∈ R : a < x < b}.
Other types of intervals, such as (a,b], (−∞,b), and (−∞,+∞), are defined

analogously.

A.3. We write f : X → Y to indicate that f is a function whose domain is X and
whose values lie in Y (Y is then sometimes called the codomain of f ); thus f
associates a unique element f (x) of Y to each element x of X . We will sometimes
define a function f : X → Y by using the arrow �→ to show the action of f on an
element of X . For example, if we are dealing with real-valued functions on R, it is
often easier to say “the function x �→ x+ 2” than to say “the function f : R → R

defined by f (x) = x+ 2.” Be careful to distinguish between → and �→: the arrow
→ is used to specify the domain and codomain of a function, while the arrow �→ is
used to describe the action of a function on an element of its domain.

Let X , Y , and Z be sets, and consider functions g : X → Y and f : Y → Z.
Then f ◦ g : X → Z is the function defined by ( f ◦ g)(x) = f (g(x)); it is called the
composition of f and g.

Suppose that f is a function from X to Y , that A is a subset of X , and that B is a
subset of Y . The image of A under f , written f (A), is defined by

f (A) = {y ∈ Y : y = f (x) for some x in A},
and the inverse image of B under f , written f−1(B), is defined by

f−1(B) = {x ∈ X : f (x) ∈ B}.
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A proof of Theorem A.13 can be found in [55, 63, 90, 118]. (Gödel and Cohen
showed that the axiom of choice is consistent with and independent of the remaining
standard axioms for set theory; again see [30, 50].)

A.14. The reader will need some experience with ordinal numbers in order to do
a few of the exercises in Chaps. 7 through 9. It is enough to know a bit about the
countable ordinals and the first uncountable ordinal and to have some facility with
transfinite recursion and induction. Once again, see [55, 63, 90, 118].
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If A is a subset of the domain of f , then the restriction of f to A is the function that
agrees with f on A and is undefined elsewhere.

A function f : X →Y is injective (or one-to-one) if f (x1) �= f (x2) holds whenever
x1 and x2 are distinct elements of X , and is surjective (or onto) if each element of
Y is of the form f (x) for some x in X . A function is bijective if it is both injective
and surjective. A function that is injective (or surjective, or bijective) is sometimes
called an injection (or a surjection, or a bijection).

If f : X → Y is bijective, then the inverse of f , written f−1, is the function from
Y to X that is defined by letting f−1(y) be the unique element of X whose image
under f is y; thus x = f−1(y) holds if and only if y = f (x).

Let A be a subset of the set X . The characteristic function (or indicator function)
of A is the function χA : X → R defined by

χA(x) =

{
1 if x ∈ A,

0 if x /∈ A.

A.4. The product (or Cartesian product) of sets X and Y , written X ×Y , is the set
of all ordered pairs (x,y) for which x ∈ X and y ∈ Y .

A.5. Notation such as {Ai}i∈I or {Ai} will be used for an indexed family of sets;
here I is the index set and Ai is the set associated to the element i of I. An infinite
sequence of sets is, of course, an indexed family of sets for which the index set is N
(or perhaps N0). The product ∏i Ai of the indexed family of sets {Ai}i∈I is the set of
all functions a : I →∪{Ai : i ∈ I} such that a(i) ∈ Ai holds for each i in I (here one
usually writes ai in place of a(i)). If each Ai is equal to the set A, we often write AI

instead of ∏i Ai.

A.6. Sets X and Y have the same cardinality if there is a bijection of X onto Y . A
set is finite if it is empty or has the same cardinality as {1,2, . . . ,n} for some positive
integer n; it is countably infinite if it has the same cardinality as N. An enumeration
of a countably infinite set X is a bijection of N onto X . Thus an enumeration of X
can be viewed as an infinite sequence {xn} such that

(a) each xn belongs to X , and
(b) each element of X is of the form xn for exactly one value of n.

A set is countable if it is finite or countably infinite.
It is easy to check that every subset of a countable set is countable. We should

also note that if X and Y are countable, then

(a) X ∪Y is countable, and
(b) X ×Y is countable.

Let us check (b) in the case where X and Y are both countably infinite. Let f be an
enumeration of X , and let g be an enumeration of Y . Then (m,n) �→ ( f (m),g(n))
is a bijection of N×N onto X ×Y , and so we need only construct an enumeration
of N×N. This, however, can be done if we define h : N → N×N by following
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(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3)

(1,4)

Fig. A.1 Enumeration of N×N

the path indicated in Fig. A.1, letting h(1) = (1,1), h(2) = (1,2), h(3) = (2,1),
and so forth. (Alternatively, one can define an enumeration h of N×N by letting
h(n) = (r + 1,s+ 1), where r and s are the nonnegative integers appearing in the
factorization n = 2r(2s+ 1) of n into a product of a power of 2 and an odd integer.)

A similar argument can be used to show that the set Q of rational numbers is
countable.

A.7. Suppose that A and B are sets. The Schröder–Bernstein theorem says that if
A has the same cardinality as some subset of B and if B has the same cardinality
as some subset of A, then A has the same cardinality as B; this can be proved with
a version of the arguments used in Proposition G.2 and suggested in part (c) of
Exercise 8.3.5 (alternatively, see Halmos [55, Section 22]).

A.8. The set R is not countable. To say that a set has the cardinality of the
continuum, or has cardinality c, is to say that it has the same cardinality as R. The
product sets {0,1}N and R

N both have the cardinality of the continuum.
The continuum hypothesis says that if A is an infinite subset of R, then either A

is countably infinite or else A has the cardinality of the continuum. K. Gödel proved
that the continuum hypothesis is consistent with the usual axioms for set theory, and
P. J. Cohen proved that it is independent of these axioms (see [30, 50]).

A.9. A relation on a set X is a property that holds for some (perhaps none, perhaps
all) of the ordered pairs in X ×X . For instance, = and ≤ are relations on R. If ∼ is
a relation on X , we write x ∼ y to indicate that ∼ holds for the pair (x,y). A relation
∼ is usually represented by (or is considered to be) the set of ordered pairs (x,y) for
which x ∼ y holds. Thus a relation on X is a subset of X ×X .

A.10. An equivalence relation on X is a relation ∼ that is reflexive (x ∼ x holds for
each x in X), symmetric (if x ∼ y, then y ∼ x), and transitive (if x ∼ y and y ∼ z, then
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x ∼ z). If ∼ is an equivalence relation on X , and if x ∈ X , then the equivalence class
of x under ∼ is the set Ex defined by

Ex = {y ∈ X : y ∼ x}.

Of course, x belongs to Ex. It is easy to check that if x,y ∈ X , then Ex and Ey are
either equal or disjoint. Thus the equivalence classes under ∼ form a partition of X
(i.e., a collection of nonempty disjoint sets whose union is X).

A.11. A partial order on a set X is a relation ≤ that is reflexive (x ≤ x holds for
each x in X), antisymmetric (if x ≤ y and y ≤ x, then x = y), and transitive (if x ≤ y
and y ≤ z, then x ≤ z). A partially ordered set is a set, together with a partial order
on it. A linear order on a set X is a partial order ≤ on X such that if x,y ∈ X , then
either x ≤ y or y ≤ x. The relation ≤ (with its usual meaning) is a linear order on R.
If X is a set with at least two elements, and if P(X) is the set of all subsets of X ,
then ⊆ is a partial order, but not a linear order, on P(X).

If ≤ is a partial order on a set X , then x < y means that x and y satisfy x ≤ y but
are not equal.

Let X be a partially ordered set, with partial order ≤. A chain in X is a subset C
of X such that if x,y ∈ C, then either x ≤ y or y ≤ x. An element x of X is an upper
bound for a subset A of X if y ≤ x holds for each y in A; a lower bound for A is
defined analogously. An element x of X is maximal if x ≤ y can hold only if y = x
(in other words, x is maximal if there are no elements of X larger than x; there may
be elements y of X for which neither x ≤ y nor y ≤ x holds).

A linear order on a set X is a well ordering if each nonempty subset of X has a
smallest element (that is, if each nonempty subset A of X has a lower bound that
belongs to A). A set X can be well ordered if there is a well ordering on X .

The set N of positive integers (with the usual order relation on it) is well ordered,
but the set Q of rationals is not. However, one can easily define a well ordering on
Q, as follows: Let f : N→Q be a bijective function (that is, an enumeration of Q),
and let f−1 be its inverse. Define a binary relation ≺ on Q by declaring that x ≺ y
holds if and only if f−1(x) < f−1(y) (here < is the usual less-than relation on N).
Since < is a well ordering of N, ≺ is a well ordering of Q.

A.12. The axiom of choice says that if S is a set of disjoint nonempty sets, then
there is a set that has exactly one element in common with each set in S . Another
(equivalent) formulation of the axiom of choice says that if {Ai}i∈I is an indexed
family of nonempty sets, then ∏i Ai is nonempty.

A.13. (Theorem) The following are equivalent:

(a) The axiom of choice holds.
(b) (Zorn’s lemma) If X is a partially ordered set such that each chain in X has an

upper bound in X, then X has a maximal element.
(c) (The well-ordering theorem) Every set can be well ordered.


