


Appendix B
Algebra and Basic Facts About R and C

B.1. A field is a set F , together with binary operations + and · on F such that

(a) (x+ y)+ z = x+(y+ z) holds for all x, y, z in F ,
(b) x+ y = y+ x holds for all x, y in F ,
(c) there is an element 0 of F such that x+ 0 = x holds for all x in F ,
(d) for each x in F there is an element −x of F such that x+(−x) = 0,
(e) (x · y) · z = x · (y · z) holds for all x, y, z in F ,
(f) x · y = y · x holds for all x, y in F ,
(g) there is an element 1 of F , distinct from 0, such that 1 · x = x holds for all x in

F ,
(h) for each nonzero x in F there is an element x−1 of F such that x · x−1 = 1, and
(i) x · (y+ z) = x · y+ x · z holds for all x, y, z in F .

Of course, one usually writes xy in place of x · y.

B.2. An ordered field is a field F , together with a linear order ≤ (see A.11) on F
such that

(a) if x, y, and z belong to F and if x ≤ y, then x+ z ≤ y+ z, and
(b) if x and y belong to F and satisfy x > 0 and y > 0, then x · y > 0.

Let F be an ordered field, and let A be a subset of F . An upper bound of A is
an element x of F such that a ≤ x holds for each a in A; a least upper bound (or
supremum) of A is an upper bound of A that is smaller than all other upper bounds
of A. Lower bounds and greatest lower bounds (or infima) are defined analogously.
An ordered field F is complete if each nonempty subset of F that has an upper bound
in F has a least upper bound in F .

B.3. The field R of real numbers is a complete ordered field; it is essentially the
only complete ordered field (see Birkhoff and MacLane [9, Chapter 4], Gleason
[49, Chapters 8 and 9], or Spivak [111, Chapters 28 and 29] for a precise statement
and proof of this assertion).
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B.4. The extended real numbers consist of the real numbers, together with +∞ and
−∞. We will use R or [−∞,+∞] to denote the set of all extended real numbers. The
relations −∞ < x and x <+∞ are declared to hold for each real number x (of course
−∞ <+∞). We define arithmetic operations on R by declaring that

x+(+∞) = (+∞)+ x =+∞

and
x+(−∞) = (−∞)+ x =−∞

hold for each real x, that

x · (+∞) = (+∞) · x =+∞

and
x · (−∞) = (−∞) · x =−∞

hold for each positive real x, and that

x · (+∞) = (+∞) · x =−∞

and
x · (−∞) = (−∞) · x =+∞

hold for each negative real x; we also declare that

(+∞)+ (+∞) = +∞,

(−∞)+ (−∞) =−∞,

(+∞) · (+∞) = (−∞) · (−∞) = +∞,

(+∞) · (−∞) = (−∞) · (+∞) =−∞,

and
0 · (+∞) = (+∞) ·0 = 0 · (−∞) = (−∞) ·0 = 0.

The sums (+∞) + (−∞) and (−∞) + (+∞) are left undefined. (The products
0 · (+∞), (+∞) · 0, (−∞) · 0, and 0 · (−∞), even though left undefined in many
other areas of mathematics, are defined to be 0 in the study of measure theory;
this simplifies the definition of the Lebesgue integral.)

The absolute values of +∞ and of −∞ are defined by

|+∞|= |−∞|=+∞.

The maximum and minimum of the extended real numbers x and y are often
denoted by x∨ y and x∧ y.
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B.13. Let V be a vector space over R or C. For each pair x, y of elements of V , the
line segment connecting x and y is the set of points that can be written in the form
tx+(1− t)y for some t in the interval [0,1]. A subset C of V is convex if for each
pair x, y of points in C the line segment connecting x and y is included in C.

B.14. (We will need this and Sect. B.15 only for the discussion of the Banach–
Tarski paradox in Appendix G.) Let V be a vector space overR, and let T : V →V be
a linear operator. If x is a nonzero vector and λ is a real number such that T (x) = λ x,
then x is an eigenvector of T and λ is an eigenvalue of T .

Note that if λ is an eigenvalue of T and if x is a corresponding eigenvector,
then (T −λ I)(x) = 0, and so T −λ I is not invertible. If the vector space V is finite
dimensional, the converse holds: λ is an eigenvalue of T if and only if the operator
T −λ I is not invertible.

Let T be a linear operator on the finite-dimensional vector space V , let {ei} be
a basis for V , and let A be the matrix of T with respect to {ei}. Define p : R → R

by p(λ ) = det(A−λ I). Then p(λ ) is a polynomial in λ , called the characteristic
polynomial of A (or of T ). The eigenvalues of T are exactly the roots of the
polynomial p(λ ).

B.15. The transpose of a matrix A (with components ai j) is the matrix At whose
components are given by at

i j = a ji. Note that if A is a d by d matrix, if x,y ∈ R
d ,

with x and y viewed as column vectors, and if (·, ·) is the usual inner product function
on R

d , then (Ax,y) = (x,Aty).

B.16. A group is a set G, together with a binary operation · on G such that

(a) (x · y) · z = x · (y · z) holds for all x, y, z in G,
(b) there is an element e of G such that e · x = x · e = x holds for all x in G, and
(c) for each x in G there is an element x−1 of G such that x · x−1 = x−1 · x = e.

A group G is commutative (or abelian) if x · y = y · x holds for all x, y in G.
One often uses +, rather than ·, to denote the operation in a commutative group.
A subgroup of the group G is a subset G0 of G that is a group when the operation ·
is restricted to G0 ×G0.

B.17. Let G1 and G2 be groups. A function f : G1 → G2 is a homomorphism if
f (x · y) = f (x) · f (y) holds for all x, y in G1. A bijective function f : G1 → G2 is an
isomorphism if both f and f−1 are homomorphisms.
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B.5. Each subset of R has a least upper bound, or supremum, and a greatest lower
bound, or infimum, in R. The supremum and infimum of a subset A of R are often
denoted by sup(A) and inf(A). Note that the set under consideration here may be
empty: each element of R is an upper bound and a lower bound of ∅; hence
sup(∅) = −∞ and inf(∅) = +∞. Note also that sup(A) is a real number (rather
than +∞ or −∞) if and only if A is nonempty and bounded above; a similar remark
applies to infima.

B.6. Let {xn} be a sequence of elements of R. The limit superior of {xn}, written
limn xn or limsupn xn, is defined by

lim
n

xn = inf
k

sup
n≥k

xn.

Likewise, the limit inferior of {xn}, written limn xn or liminfn xn, is defined by

lim
n

xn = sup
k

inf
n≥k

xn.

The relation limn xn ≤ limn xn holds for each sequence {xn}. The sequence {xn} has
a limit (in R) if limn xn = limn xn; the limit of {xn} is then defined by

lim
n

xn = lim
n

xn = lim
n

xn

(note that limn xn can be +∞ or −∞).
In cases where each xn, along with limn xn, is finite, the definition of limit given

above is equivalent to the usual ε–δ (or ε–N) definition: x = limn xn if and only
if for every ε there is a positive integer N such that |xn − x| < ε holds for each n
larger than N. (We need our definition of limits in R, involving lim sups and lim
infs, because we need to handle infinite limits and sums, and sums some of whose
terms may include +∞ or −∞.)

B.7. We will occasionally need the fact that if a and an, n = 1, 2, . . . , are real (or
complex) numbers such that a = limn an, then a = limn(a1 + · · ·+ an)/n. To verify
this, note that if 1 ≤ M < n, then

∣
∣
∣
∣
1
n

n

∑
i=1

ai − a

∣
∣
∣
∣≤

1
n

M

∑
i=1

|ai − a|+ 1
n

n

∑
i=M+1

|ai − a|.

If we first make M so large that |ai − a| < ε if i > M and then choose N so large
that (1/n)∑M

i=1 |ai −a| is less than ε if n > N, then (1/n)∑n
i=1 ai is within 2ε of a if

n > max(M,N).

B.8. Let ∑∞
k=1 xk be an infinite series whose terms belong to R. This series has a

sum if

(a) +∞ and −∞ do not both occur among the terms of ∑∞
k=1 xk, and

(b) the sequence {∑n
k=1 xk}∞

n=1 of partial sums of ∑∞
k=1 xk has a limit in R.
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The sum of the series ∑∞
k=1 xk is then defined to be limn ∑n

k=1 xk and is denoted by
∑∞

k=1 xk. (Note that condition (a) above is needed to guarantee that each of the partial
sums ∑n

k=1 xk is defined.)
The reader can check that the sum of the series ∑∞

k=1 xk exists and belongs to R

if and only if

(a) each term of ∑∞
k=1 xk belongs to R, and

(b) the series ∑∞
k=1 xk is convergent (in the sense of elementary calculus).

Suppose that ∑∞
k=1 xk is an infinite series whose terms belong to [0,+∞]. It is

easy to see that the sum of the series ∑∞
k=1 xk exists and is the supremum of the set

of sums ∑k∈F xk, where F ranges over the set of finite subsets of N.

B.9. A dyadic rational is a number that can be written in the form i/2n for some
integer i and some nonnegative integer n. If x is a dyadic rational that belongs to
the interval (0,1), then x can be written in the form i/2n, where n is a positive
integer and i is an odd integer such that 0 < i < 2n. Such an x has a binary expansion
0.b1b2 . . .bn, where there are exactly n bits to the right of the binary point and where
bn, the rightmost of these bits, is equal to 1. Such an x also has an unending binary
expansion, where bn = 0 and all the later bits (bn+1, bn+2, . . . ) are equal to 1. These
dyadic rationals are the only values in the interval (0,1) that have more than one
binary expansion; to see this, suppose that x has binary expansions 0.b1b2 . . . and
0.c1c2 . . . , let n0 be the smallest n such that bn �= cn (for definiteness, suppose that
bn0 = 0 and cn0 = 1), and check that this can happen only if bn0+1 = bn0+2 = · · ·= 1
and cn0+1 = cn0+2 = · · ·= 0.

B.10. Roughly speaking, the complex numbers are those of the form x+ iy, where x
and y are real numbers and i satisfies i2 =−1. They form a field. More precisely, the
set C of complex numbers can be represented by the set of all ordered pairs (x,y) of
real numbers; addition and multiplication are then defined on C by

(x,y)+ (u,v) = (x+ u,y+ v)

and

(x,y) · (u,v) = (xu− yv,xv+ yu).

It is not hard to check that with these operations

(a) C is a field, and
(b) (0,1) · (0,1) = (−1,0).

If we return to the usual informal notation and write x+ iy in place of (x,y), then
assertions (a) and (b) above provide justification for the first two sentences of this
paragraph.

If z is a complex number, then the real numbers x and y that satisfy z = x+ iy are
called the real and imaginary parts of z; they are sometimes denoted by ℜ(z) and
ℑ(z).
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The absolute value, or modulus, of the complex number z (where z = x+ iy) is
defined by

|z|=
√

x2 + y2.

It is easy to check that |z1z2| = |z1||z2| and |z1 + z2| ≤ |z1|+ |z2| hold for all z1, z2

in C.
Limits of sequences of complex numbers and sums of infinite series whose terms

are complex are defined in the expected way. The exponential function is defined on
C by the usual infinite series:

ez =
∞

∑
n=0

zn/n!.

With some elementary manipulations of this series, one can check that

(a) e0 = 1,
(b) ez1+z2 = ez1ez2 for all complex z1 and z2, and
(c) eit = cost + isin t for all real t.

B.11. Let F be a field (in this book it will generally be R or C). A vector space
over F is a set V , together with operations (v1,v2) �→ v1 + v2 from V ×V to V and
(α,v) �→ α · v from F ×V to V such that

(a) (x+ y)+ z = x+(y+ z) holds for all x, y, z in V ,
(b) x+ y = y+ x holds for all x, y in V ,
(c) there is an element 0 of V such that x+ 0 = x holds for all x in V ,
(d) for each x in V there is an element −x of V such that x+(−x) = 0,
(e) 1 · x = x holds for all x in V ,
(f) (αβ ) · x = α · (β · x) holds for all α , β in F and all x in V ,
(g) (α +β ) · x = α · x+β · x holds for all α , β in F and all x in V , and
(h) α · (x+ y) = α · x+α · y holds for all α in F and all x, y in V .

(We will, of course, usually write αx in place of α · x.)
Note that Rd is a vector space over R and that Cd is a vector space over C (it is

also a vector space over R). Note also that if F is a field, then F is a vector space
over F .

A subspace (or a linear subspace) of a vector space V over F is a subset V0 of
V that is a vector space when the operations + and · are restricted to V0 ×V0 and
F ×V0.

B.12. Let V1 and V2 be vector spaces over the same field F . A function L : V1 →V2

is linear if

L(αx+β y) = αL(x)+β L(y)

holds for all α , β in F and all x, y in V1. A bijective linear map is a linear
isomorphism. It is easy to check that the inverse of a linear isomorphism is linear.

Let V be a vector space over the field F . A linear functional on V is a linear map
from V to the field F .


