


Appendix C
Calculus and Topology in R

d

C.1. Recall that Rd is the set of all d-tuples of real numbers; it is a vector space
over R. (The d in R

d is for dimension; we write R
d , rather than R

n, in order to
have n available for use as a subscript.) Let x = (x1, . . . ,xd) and y = (y1, . . . ,yd) be
elements of Rd . The norm of x is defined by

‖x‖=
(

d

∑
i=1

x2
i

)1/2

and the distance between x and y is defined to be ‖x− y‖.

C.2. If x ∈R
d and if r is a positive number, then the open ball B(x,r) with center x

and radius r is defined by

B(x,r) = {y ∈ R
d : ‖y− x‖< r}.

A subset U of Rd is open if for each x in U there is a positive number r such that
B(x,r)⊆U . A subset of Rd is closed if its complement is open. A point x in R

d is a
limit point of the subset A of Rd if for each positive r the open ball B(x,r) contains
infinitely many points of A (this is equivalent to requiring that for each positive r the
ball B(x,r) contain at least one point of A distinct from x). It is easy to check that a
subset of Rd is closed if and only if it contains all of its limit points.

If A is a subset of Rd , then the closure of A is the set A (or A−) that consists of
the points in A, together with the limit points of A; A is closed and is, in fact, the
smallest closed subset of Rd that includes A.

C.3. A subset A of Rd is bounded if there is a real number M such that ‖x‖ ≤ M
holds for each x in A.

C.4. (Proposition) Let U be an open subset of R. Then there is a countable
collection U of disjoint open intervals such that U = ∪U .
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Proof. Let U consist of those open subintervals I of U that are maximal, in the
sense that the only open interval J that satisfies I ⊆ J ⊆ U is I itself. Of course
∪U ⊆ U . One can verify the reverse inclusion by noting that if x ∈ U , then the
union of those open intervals that contain x and are included in U is an open interval
that contains x and belongs to U . It is easy to check (do so) that the intervals in U
are disjoint from one another. If for each I in U we choose a rational number xI

that belongs to I, then (since the sets in U are disjoint from one another) the map
I �→ xI is an injection; thus U has the same cardinality as some subset of Q, and so
is countable (see item A.6 in Appendix A). �	
C.5. A sequence {xn} of elements of R

d converges to the element x of R
d if

limn ‖xn − x‖ = 0; x is then called the limit of the sequence {xn} (note that here
x and x1, x2, . . . are elements of Rd ; in particular, x1, x2, . . . are not the components
of x). A sequence in R

d is convergent if it converges to some element of Rd .

C.6. Let A be a subset of R
d , and let x0 belong to A. A function f : A → R is

continuous at x0 if for each positive number ε there is a positive number δ such
that | f (x)− f (x0)| < ε holds whenever x belongs to A and satisfies ‖x− x0‖ < δ ;
f is continuous if it is continuous at each point in A. The function f : A → R is
uniformly continuous if for each positive number ε there is a positive number δ such
that | f (x)− f (x′)|< ε holds whenever x and x′ belong to A and satisfy ‖x−x′‖< δ .
A function f : A → R is continuous on (or uniformly continuous on) the subset A0

of A if the restriction of f to A0 is continuous (or uniformly continuous).

C.7. Let A be a subset of R
d , let f be a real- or complex-valued function on

A, and let a be a limit point of A. Then f (x) has limit L as x approaches a,
written limx→a f (x) = L, if for every positive ε there is a positive δ such that
| f (x)− f (a)|< ε holds whenever x is a member of A that satisfies 0 < ‖x−a‖< δ .

One can check that limx→a f (x) = L if and only if limn f (xn) = L for every
sequence {xn} of elements of A, all different from a, such that limn xn = a. (Let
us consider the more difficult half of that assertion, namely that if limn f (xn) = L
for every sequence {xn} of elements of A, all different from a, such that limn xn = a,
then limx→a f (x) = L. We prove this by proving its contrapositive. So assume that
limx→a f (x) = L is not true. Then there exists a positive ε such that for every positive
δ there is a value x in A such that 0 < ‖x− a‖ < δ and | f (x)−L| ≥ ε . If for each
n we let δ = 1/n and choose an element xn of A such that 0 < ‖xn − a‖ < 1/n and
| f (xn)−L| ≥ ε , we will have a sequence {xn} of elements of A, all different from a,
that satisfy limn xn = a but not limn f (xn) = L.)

C.8. Let A be a subset of Rd . An open cover of A is a collection S of open subsets
of Rd such that A ⊆∪S . A subcover of the open cover S is a subfamily of S that
is itself an open cover of A.

Proofs of the following results can be found in almost any text on advanced
calculus or basic analysis (see, for example, Bartle [4], Hoffman [60], Rudin [104],
or Thomson et al. [117]).
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C.9. (Theorem) Let A be a closed bounded subset of Rd. Then every open cover
of A has a finite subcover.

Theorem C.9 is often called the Heine–Borel theorem.

C.10. (Theorem) Let A be a closed bounded subset of Rd. Then every sequence of
elements of A has a subsequence that converges to an element of A.

C.11. It is easy to check that the converses of Theorems C.9 and C.10 hold: if A
satisfies the conclusion of Theorem C.9 or of Theorem C.10, then A is closed and
bounded. The subsets of Rd that satisfy the conclusion of Theorem C.9 (hence the
closed bounded subsets of Rd) are often called compact. See also Appendix D.

C.12. (Theorem) Let C be a nonempty closed bounded subset of R
d, and let

f : C →R be continuous. Then

(a) f is uniformly continuous on C, and
(b) f is bounded on C. Moreover, there are elements x0 and x1 of C such that

f (x0)≤ f (x) ≤ f (x1) holds at each x in C.

C.13. (The Intermediate Value Theorem) Let A be a subset of R, and let f : A →
R be continuous. If the interval [x0,x1] is included in A, then for each real number y
between f (x0) and f (x1) there is an element x of [x0,x1] such that y = f (x).

C.14. (The Mean Value Theorem) Let a and b be real numbers such that a < b.
If f : [a,b] → R is continuous on the closed interval [a,b] and differentiable at
each point in the open interval (a,b), then there is a number c in (a,b) such that
f (b)− f (a) = f ′(c)(b− a).


