


Appendix F
Liftings

Let (X ,A ,μ) be a measure space. Throughout this appendix we will assume that
the measure μ is finite but not the zero measure (see Exercise 2). Recall that
L ∞(X ,A ,μ ,R) is the vector space of all bounded real-valued A -measurable
functions on X and that L∞(X ,A ,μ ,R) is the vector space of equivalence classes
of functions in L ∞(X ,A ,μ ,R), where two functions are considered equivalent
if they are equal μ-almost everywhere.1 For simplicity, we will generally write
L ∞(X ,A ,μ), instead of L ∞(X ,A ,μ ,R). We will occasionally use the norm ‖·‖∞
on L ∞(X ,A ,μ) defined by

‖ f‖∞ = sup{| f (x)| : x ∈ X}.

Note that for this version of the norm ‖ · ‖∞ a function f satisfies ‖ f‖∞ = 0 only if
f vanishes everywhere on X ; it is not enough for it to vanish almost everywhere.

It is natural to ask whether a function in L ∞(X ,A ,μ) can be chosen from
each equivalence class in L∞(X ,A ,μ) in such a way the choice is linear and
multiplicative. Since notation involving functions is simpler than notation involving
equivalence classes, one generally deals with functions and makes the following def-
initions. A lifting of L ∞(X ,A ,μ) is a function ρ : L ∞(X ,A ,μ)→ L ∞(X ,A ,μ)
such that for all f , g in L ∞(X ,A ,μ) and all real numbers a and b we have

1In the present context (i.e., in cases where the measure μ is finite), it is the same to say that two
functions agree almost everywhere as to say that they agree locally almost everywhere. Thus, for
our current discussion the definition of L ∞(X ,A ,μ ,R) given here is consistent with the one in
Chap. 4. We will use the current definition since it makes the exposition that follows simpler. If we
were looking at liftings on very large measure spaces, we would speak of locally null sets and of
equality locally almost everywhere; see [65].
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406 F Liftings

(a) if f = g almost everywhere, then2 ρ( f ) = ρ(g),
(b) ρ( f ) = f almost everywhere,
(c) ρ(a f + bg) = aρ( f )+ bρ(g),
(d) ρ( f g) = ρ( f )ρ(g), and
(e) ρ(1) = 1.

Conditions (a) and (b) say that ρ can be interpreted as providing a choice of a
function in L ∞(X ,A ,μ) from each equivalence class in L∞(X ,A ,μ).

The main theorem of this appendix (Theorem F.5, the lifting theorem) says that
liftings of L ∞(X ,A ,μ) exist, if the measure μ is complete.

If f is a nonnegative function in L ∞(X ,A ,μ), then
√

f also belongs to
L ∞(X ,A ,μ), and so ρ( f ) = ρ(

√
f )ρ(

√
f ). It follows that

(f) if f ≥ 0, then ρ( f )≥ 0.

A function ρ : L ∞(X ,A ,μ)→ L ∞(X ,A ,μ) is called a linear lifting if it satisfies
conditions (a), (b), (c), (e), and (f). We will encounter linear liftings while
constructing liftings.

Recall that �∞ is the vector space of all bounded sequences of real numbers, with
norm given by ‖{xn}‖∞ = supn |xn|. Let c be the subspace of �∞ consisting of the
sequences {xn} for which limn xn exists; give c the norm it inherits from �∞.

F.1. (Lemma) There is a linear functional Λ : �∞ → R such that

(a) Λ({xn}) = limn xn for all {xn} in c,
(b) |Λ({xn})| ≤ ‖{xn}‖∞ for all {xn} in �∞, and
(c) Λ({xn}) is positive, in the sense that Λ({xn})≥ 0 whenever {xn} is a sequence

in �∞ whose terms are nonnegative.

In other words, if L is the linear functional defined on the subspace c of �∞ by
L({xn}) = limn xn, then L can be extended to a linear functional on all of �∞ that has
norm 1 and is positive.

Proof. As in the previous paragraph, define a linear functional L on c by
L({xn}) = limn xn. Then L satisfies |L({xn})| ≤ ‖{xn}‖∞ for all {xn} in c, and so
the Hahn–Banach theorem (Theorem E.7 in Appendix E) gives a linear functional
Λ on �∞ that satisfies conditions (a) and (b). If {xn} is a sequence in �∞ whose terms
are nonnegative, and if s = supn xn, then

|Λ({xn})− s/2|= |Λ({xn − s/2})| ≤ ‖{xn − s/2}‖∞ = s/2,

from which it follows that Λ({xn})≥ 0. �	

2Note that when we say that two functions are equal, but don’t give a qualification with the words
“almost everywhere,” then we are saying that the functions are identical. For example, condition
(a) says that if f (x) = g(x) for almost every x, then ρ( f )(x) = ρ(g)(x) for every x.
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(d) Define an operator ρ on L ∞([0,1],A ,λ ,R) by ρ( f )(t) = φt( f ). Show that
for each f the function ρ( f ) is bounded and measurable, and moreover that
ρ is a lifting of L ∞([0,1],A ,λ ,R).

Notes

The existence of liftings was first proved by von Neumann [119] and by Maharam
[87]. In the 1960s A. and C. Ionescu Tulcea were very active in studying liftings;
see [64, 65]. The paper by Strauss et al. [115] surveys much more recent work.
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(a) σ(∪αBα) = ∪αBα , and
(b) L ∞(X ,σ(∪αBα ),μ) = ∪αL ∞(X ,Bα ,μ).

6. In this exercise we look at a proof of the existence of liftings in the particular case
of L ∞([0,1],A ,λ ), where A is the σ -algebra of Lebesgue measurable subsets
of [0,1]. The proof outlined here has the advantage that it is simpler than the one
given above and relates liftings to differentiation theory. However, it depends on
a basic but nontrivial result about Banach algebras that is quoted below but not
proved, and it only gives liftings in the case of certain measure spaces.

Let A be a commutative Banach algebra (see Sect. 9.4). We assume that A has
a multiplicative identity element 1 that satisfies ‖1‖ = 1. Recall that an ideal in
A is a subset I of A that is a vector subspace of A, is a proper subset of A, and
is such that xy ∈ I whenever x ∈ A and y ∈ I. A maximal ideal is an ideal that is
included in no larger ideal. We will be looking at Banach algebras over the field
C, because complex-variable techniques are used in the proof of the result we
quote below. We will assume that the Banach algebras that we consider have an
involution x �→ x∗ that satisfies

(i) (x+ y)∗ = x∗+ y∗,
(ii) (xy)∗ = x∗y∗,

(iii) (αx)∗ = αx∗ (where α is the complex conjugate of α), and
(iv) x∗∗ = x

for all x and y in A and all α in C. In the case where A = L ∞([0,1],A ,λ ,C), the
operator that takes a function f to the complex conjugate of f is an involution (in
fact, it is the only involution we will need to consider).

The result we need to quote says that if A is a Banach algebra over C that has
an involution, and if M is a maximal ideal in A, then there is a linear functional
φ on A such that

(i) ‖φ‖ ≤ 1,
(ii) φ(xy) = φ(x)φ(y) holds for all x, y in A,

(iii) φ(1) = 1,
(iv) φ(x∗) = φ(x) holds for all x in A, and
(v) M = {x ∈ A : φ(x) = 0}.

(see Simmons [109, Chapters 12 and 13], Hewitt and Ross [58, Appendix C], or
Lax [82, Chapters 18 and 19]).

(a) Let A be the Banach algebra L ∞([0,1],A ,λ ,C). For each t in [0,1] let It be
the subset of A consisting of those functions f such that F ′(t) exists and is
equal to 0, where F is the function defined by F(u) =

∫ u
0 | f (s)|ds (note the

absolute value signs around f (s)). Show that It is an ideal in A.
(b) Show that for each t there is a maximal ideal Mt in A that includes It . (Hint:

Use Zorn’s lemma.)
(c) Suppose that for each t we apply the result quoted above to the maximal

ideal Mt , thereby producing a family of function {φt}t . Show that if f is a
real-valued function in L ∞([0,1],A ,λ ,C), then for each t the value φt( f ) is
a real number.
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Let C be a convex subset of a vector space E . An extreme point of C is a point x
in C that cannot be written as a convex combination of points of C different from x.
In other words, we are requiring that if x = ty+(1− t)z, where y and z belong to C
and 0< t < 1, then y = z = x. More generally, an extremal subset of C is a nonempty
subset C0 of C such that if x ∈ C0 and x = ty+(1− t)z, where y and z belong to C
and 0 < t < 1, then y and z belong to C0. Thus a point x in C is an extreme point of
C if and only if {x} is an extremal subset of C.

As examples let us consider some subsets of R2. If C1 is the disk defined by

C1 = {(x1,x2) ∈R
2 : x2

1 + x2
2 ≤ 1},

then C1 has infinitely many extreme points, namely the points on the circle that
forms the boundary of C1. On the other hand, if C2 is the square defined by

C2 = {(x1,x2) ∈ R
2 : −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1},

then C2 has only four extreme points, namely its corner points (1,1), (1,−1),
(−1,1), and (−1,−1). The remaining boundary points of C2 are not extreme points.
The four line segments that make up the boundary of C2 (that is, the line segments
that join adjacent corners of C2) are extremal subsets of C2, as is the set that consists
of all the boundary points of C2. Finally, the open disk C3 defined by

C3 = {(x1,x2) ∈ R
2 : x2

1 + x2
2 < 1}

is convex, but it has no extreme points.
We will need to know that certain sets have extreme points. If we assumed a

substantial amount of functional analysis in the reader’s background, we would
simply appeal to the Krein–Milman theorem, which says that if K is a nonempty
compact convex subset of a locally convex Hausdorff topological vector space, then
K has extreme points and is in fact the smallest closed convex set that contains all
the extreme points of K. However, all we need is given by the following lemma,
which we can prove without too much work.

F.2. (Lemma) Let S be a nonempty set and let E be the product space R
S,

considered as a vector space and as a topological space with the product topology.
Then each nonempty compact convex subset of E has at least one extreme point.

Proof. Let K be a nonempty compact convex subset of R
S, and let E be the

collection of all nonempty closed extremal subsets of K. Then E contains K, and
so is nonempty. Let us view E as a partially ordered set, with E1 ≤ E2 holding if
E2 ⊆ E1. (Be careful: sets that are larger with respect to the partial order ≤ are
smaller with respect to set inclusion.) We will use Zorn’s lemma (see A.13) to get
an element of E that is maximal with respect to ≤ and hence minimal with respect
to ⊆. So suppose that C is a chain of elements of E . The intersection of any finite
subcollection of C belongs to C (it is a member of the subcollection), and so is
nonempty. This, together with the compactness of K, implies that the intersection
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of all the members of C is nonempty (and, of course, closed). Furthermore, since
each element of C is extremal, so is the intersection of the elements of C . Thus C ,
which was an arbitrary chain in E , has an upper bound in E . So we can apply Zorn’s
lemma, which gives a maximal element of E , say E0.

The maximality of E0 says that E0 has no subsets that belong to E . What if E0

contains more than one point? Each point in E0 is a member of the product space
R

S and so is a function from S to R. If there are two members of E0, say e1 and e2,
then there must be a point s in S such that e1(s) �= e2(s). Let m = inf{e(s) : e ∈ E0}.
Then, since E0 is compact and the function e �→ e(s) is continuous, the set

{e ∈ E0 : e(s) = m}

is a proper subset of E0 that is nonempty, closed, and extremal. This contradicts the
maximality of E0, and we conclude that E0 can contain only one element, say e0.
It follows that e0 is an extreme point of K. �	

The following two lemmas contain most of the technical details needed to prove
the existence of liftings.

F.3. (Lemma) Suppose that (X ,A ,μ) is a probability3 space, A0 is a sub-σ -
algebra of A , and ρ is a lifting of L ∞(X ,A0,μ). If E0 is a member of A that does
not belong to A0, then ρ can be extended to a lifting of L ∞(X ,σ(A0 ∪{E0}),μ).

Note the abuse of notation in the statement of Lemma F.3: μ first represents a
measure on A , then the restriction of that measure to the sub-σ -algebra A0, and
finally the restriction of it to σ(A0 ∪{E0}).
Proof. Recall that σ(A0∪{E0}) consists of the sets of the form (A∩E0)∪(B∩Ec

0),
where A and B belong to A0 (see part (a) of Exercise 1.5.12), and that a function
f : X → R is σ(A0 ∪ {E0})-measurable if and only if there are A0-measurable
real-valued functions f0 and f1 such that f = f0χE0 + f1χEc

0
(see Exercise 2.1.9).

It follows that the functions in L ∞(X ,σ(A0 ∪ {E0}),μ) are those that have the
form f0χE0 + f1χEc

0
for some f0, f1 in L ∞(X ,A0,μ).

Suppose that ρ1 is a lifting of L ∞(X ,σ(A0 ∪{E0}),μ) that is an extension of
ρ . Then there is a set E1 in σ(A0 ∪{E0}) such that ρ1(χE0) = χE1 (see Exercise 3),
and for each function of the form f0χE0 + f1χEc

0
, where f0 and f1 belong to

L ∞(X ,A0,μ), we have

ρ1( f0χE0 + f1χEc
0
) = ρ1( f0)ρ1(χE0)+ρ1( f1)ρ1(χEc

0
)

= ρ( f0)χE1 +ρ( f1)χEc
1
.

3What we really want is for μ to be a finite measure such that μ(X) �= 0. It’s easier, however, to say
that we assume μ to be a probability measure, and if we prove our results for probability measures,
we will also have proved them for all nonzero finite measures.
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measurable. It is easy to check that L is a linear lifting that extends each lifting ρn.
Now use Lemma F.4 to get a lifting ρ∞ that satisfies

χ{L(χA)=1} ≤ ρ∞(χA)≤ χ{L(χA)>0} (9)

for every A in B∞. If A ∈ Bn, then, since L is an extension of ρn and since 0 and
1 are the only possible values for the function ρn(χA), we have {L(χA) = 1} =
{L(χA) > 0}. It now follows from (9) that ρ∞(χA) = L(χA) = ρn(χA), and so ρ∞
is an extension of ρn (to check this, approximate functions in L ∞(X ,B∞,μ) with
simple functions—see the proof of Lemma F.4). Thus we have an upper bound
(B∞,ρ∞) for the chain C .

Finally, we need to produce an upper bound for the chain C in the case where
C has no cofinal sequences. Suppose that C is the family {(Bα ,ρα)}α , where α
ranges over some index set. Then ∪αBα is a σ -algebra and L ∞(X ,∪αBα ,μ) =
∪αL ∞(X ,Bα ,μ) (see Exercise 5). We can define a lifting ρ on L ∞(X ,∪αBα ,μ)
by letting ρ( f ) be ρα( f ), where α is an index such that f ∈ L ∞(X ,Bα ,μ) (the
index α depends, of course, on f ). With this we have an upper bound for the chain
C , and the proof is complete. �	

Exercises

1. Let X = {1,2,3}, let A be the set of all subsets of X , and let μ be the measure
on (X ,A ) defined by μ = 1

3 δ1 +
2
3 δ2.

(a) Find a lifting of L ∞(X ,A ,μ).
(b) Find all liftings of L ∞(X ,A ,μ).

2. Suppose that (X ,A ,μ) is a measure space such that X is nonempty but μ(X)= 0.
Show that there are no liftings of L ∞(X ,A ,μ).

3. Suppose that ρ is a lifting of L ∞(X ,A ,μ). Show that if E ∈ A , then there is a
set E ′ in A such that ρ(χE) = χE ′ and μ(E �E ′) = 0.

4. Let (X ,A ,μ) be a measure space. A function ρ ′ : A →A is a lifting of A if

(i) ρ ′(A) = ρ ′(B) whenever μ(A�B) = 0,
(ii) μ(A�ρ ′(A)) = 0 for all A in A ,

(iii) ρ ′(∅) =∅ and ρ ′(X) = X ,
(iv) ρ ′(A∪B) = ρ ′(A)∪ρ ′(B) for all A and B in A , and
(v) ρ ′(A∩B) = ρ ′(A)∩ρ ′(B) for all A and B in A .

Suppose that for each lifting ρ of L ∞(X ,A ,μ) we define a function ρ ′ : A →A
by χρ ′(A) = ρ(χA). Show that ρ �→ ρ ′ is a bijection of the set of all liftings of
L ∞(X ,A ,μ) onto the set of all liftings of A .

5. Let (X ,A ,μ) be a measure space and let {Bα}α be a linearly ordered family
of sub-σ -algebras of A . Suppose that for each countable subfamily {Bαn}n of
{Bα}α there is an element Bα ′ of {Bα}α such that Bαn ⊆ Bα ′ holds for every
n. Show that
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L1−(χA) belong to [0,1]). Likewise, if L0(χA)(x) = 0, then L1(χA)(x) = 0 and
so L1+(χA)(x) = L1−(χA)(x) = 0. It follows that L1+ and L1− satisfy (7) and so
correspond to elements of C. However, L1 corresponds to an extreme point of C and
satisfies L1 =

1
2 L1++ 1

2 L1−, and so we have L1 = L1+ = L1−. But this implies that
L1( f g)−L1( f )L1(g) = 0, and the multiplicativity of L1 follows. Thus L1 is a lifting
that satisfies (5), and the proof is complete. �	
F.5. (Theorem) If (X ,A ,μ) is a complete probability space, then there is a lifting
of L ∞(X ,A ,μ).

Proof. Let T be the collection of all pairs (B,ρ), where B is a sub-σ -algebra of
A that contains all the μ-null sets in A and where ρ is a lifting of L ∞(X ,B,μ).
(Of course, by L ∞(X ,B,μ) we really mean L ∞(X ,B,μB), where μB is the
restriction of μ to the sub-σ -algebra B of A . Such abuse of notation will occur
often in this proof.) Let us define a relation ≤ on T by defining (B1,ρ1)≤ (B2,ρ2)
to mean that B1 ⊆ B2 and ρ1 is the restriction of ρ2 to L ∞(X ,B1,μ). Then ≤ is a
partial order on T .

We’ll check that T is nonempty and that each chain in T has an upper bound in
T , and so Zorn’s lemma will provide a maximal element (B′,ρ ′) of T . Then B′
must be equal to A (and the proof will be complete), since otherwise Lemma F.3
would provide an extension of ρ ′ to L ∞(X ,B′′,μ) for some still larger sub-σ -
algebra B′′ of A , and (B′,ρ ′) would not be maximal.

We turn to the details. First let us check that T is nonempty. Let B0 be the
collection of μ-null sets in A , together with their complements. Then B0 is a
σ -algebra, L ∞(X ,B0,μ) consists of the bounded measurable functions that are
almost everywhere constant, and the operator that assigns to each such function f
the constant function that is almost everywhere equal to f is a lifting.

Next suppose that C is a chain in T ; we will produce an upper bound for C . Let
us consider two cases.

In the first case there is an increasing sequence {(Bn,ρn)}∞
n=1 in C that is cofinal,

in the sense that for every (B,ρ) in C there is an n such that (B,ρ) ≤ (Bn,ρn).
Let us construct an upper bound (B∞,ρ∞) of C . We’ll use conditional expectations
and the martingale convergence theorem (see Sect. 10.4) to do so. Define B∞ by
B∞ = σ(∪nBn). Choose a linear functional Λ on �∞ as given by Lemma F.1,
and note that for each x in X the sequence {ρn(E( f |Bn))(x)} belongs to �∞ (of
course, E( f |Bn) is only determined up to a null set, but then ρn, as a lifting,
gives the same result whatever version of E( f |Bn) is used). Thus we can define
an operator L on L ∞(X ,B∞,μ) by L( f )(x) = Λ({ρn(E( f |Bn))(x)}). It follows
from Proposition 10.4.12 that if f ∈ L ∞(X ,B∞,μ), then the sequence {E( f |Bn)}
converges almost everywhere to f . Hence {ρn(E( f |Bn))} also converges almost
everywhere to f and so L( f ) = f a.e. In particular, since μ is complete, L( f ) is
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We need to construct such a lifting ρ1; we’ll do that by choosing a set E1 in such a
way that

ρ1( f0χE0 + f1χEc
0
) = ρ( f0)χE1 +ρ( f1)χEc

1
(1)

defines a lifting ρ1 that is an extension of ρ .
Suppose that we produce a set E1 in σ(A0 ∪{E0}) such that

(a) χE0 = χE1 a.e.,
(b) if functions f and f ′ in L ∞(X ,A0,μ) agree almost everywhere on E0, then

ρ( f ) and ρ( f ′) agree everywhere on E1 (that is, if ( f − f ′)χE0 = 0 a.e., then
(ρ( f )−ρ( f ′))χE1 = 0), and

(c) if functions f and f ′ in L ∞(X ,A0,μ) agree almost everywhere on Ec
0, then

ρ( f ) and ρ( f ′) agree everywhere on Ec
1.

Then it follows that

if f0χE0 + f1χEc
0
= f ′0χE0 + f ′1χEc

0
a.e., then

ρ( f0)χE1 +ρ( f1)χEc
1
= ρ( f ′0)χE1 +ρ( f ′1)χEc

1

and
f0χE0 + f1χEc

0
= ρ( f0)χE1 +ρ( f1)χEc

1
a.e.

This implies that Eq. (1) gives a well-defined function ρ1 that is an extension of
ρ and satisfies the first two conditions in the definition of a lifting. The remaining
conditions (that ρ1 is linear and multiplicative and that it satisfies ρ1(1) = 1) are
easy to check.

We turn to the construction of the set E1. Choose a sequence {Cn} of sets that
belong to A0, satisfy χCn ≤ χE0 a.e. for each n, and are such that

sup
n

μ(Cn) = sup{μ(C) : C ∈ A0 and χC ≤ χE0 a.e.};

then define a set F1 by F1 = ∪nCn. Then F1 has maximal measure among the sets in
A that are included (except perhaps for a null set) in E0, and each A -measurable
set that is included (up to a null set) in E0 is also included (up to a null set) in F1.
A similar construction produces an analogous set F2 that is included (up to a null
set) in Ec

0. Now let G1 = ρ(F1) and G2 = ρ(F2).

Claim. The sets G1 and G2 satisfy

G1 ∩G2 =∅, (2)

μ(G1 −E0) = 0 (that is, G1 ⊆ E0 to within a null set), and (3)

μ(G2 −Ec
0) = 0 (that is, G2 ⊆ Ec

0 to within a null set). (4)
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For (2), note that χF1 χF2 = 0 a.e., which implies that χG1 χG2 = ρ(χF1 χF2) = 0.
Relation (3) follows from the fact that χG1 = χF1 a.e. and χF1 ≤ χE0 a.e., and (4) has
a similar proof.

Now define E1 by E1 = (E0 ∪G1)∩Gc
2. Then condition (a) above follows from

(2)–(4). We turn to condition (b). Suppose that f and f ′ belong to L ∞(X ,A0,μ)
and agree almost everywhere on E0. We need to show that ρ( f ) = ρ( f ′) on E1. Let
D = {x ∈ X : f (x) �= f ′(x)}. Then χD ≤ χF2 a.e., and so ρ(χD) ≤ ρ(χF2) = χG2 .
Since D was defined so that ( f − f ′)χDc = 0, we have (ρ( f )−ρ( f ′))ρ(χDc) = 0.
It follows that (ρ( f )− ρ( f ′))χGc

2
= 0, and so ρ( f ) and ρ( f ′) agree everywhere

outside G2 and hence on E1. This completes the proof of (b). The proof of (c) is
similar, and with that the lemma is proved. �	
F.4. (Lemma) Suppose that (X ,A ,μ) is a complete probability space and that L0

is a linear lifting of L ∞(X ,A ,μ). Then there is a lifting ρ of L ∞(X ,A ,μ) such
that

χ{L0(χA)=1} ≤ ρ(χA)≤ χ{L0(χA)>0} (5)

holds for each A in A .

The significance of (5) will become clear when we use Lemma F.4 to prove
Theorem F.5.

Proof. Let S be the Cartesian product L ∞(X ,A ,μ)×X . We will identify linear
liftings of L ∞(X ,A ,μ) with functions from S to R, that is, we will identify a linear
lifting L of L ∞(X ,A ,μ) with the function L′ : S→R defined by L′( f ,x) = L( f )(x).
Thus we will view linear liftings as members of the product space R

S. The plan for
the current proof is to define a certain subset C of RS, to show that C is nonempty,
compact, and convex, and then to show that the extreme points of C (which exist,
according to Lemma F.2) are liftings that satisfy (5). That will complete the proof
of the lemma.

Let us look at how the conditions defining liftings and linear liftings translate
into conditions on elements of R

S. For example, the condition that L satisfies
L(a f + bg) = aL( f ) + bL(g) for all a, b, f , and g becomes the condition that the
corresponding function L′ satisfies

L′(a f + bg,x) = aL′( f ,x)+ bL′(g,x) for all a, b, f , g, and x. (6)

Note also that, since all the coordinate projections L′ �→ L′( f ,x) of R
S are

continuous, those elements of RS that satisfy (6) form a closed subset of RS.
We now define the set C to be the collection of all L′ in R

S that satisfy the
translations into conditions on L′ of conditions (a), (c), (e), and (f) in the definition
of a linear lifting, plus the translation of the relation

χ{L0(χA)=1} ≤ L(χA)≤ χ{L0(χA)>0}, (7)
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which is to hold for all A in A . It is easy to check that C is closed and convex.
Furthermore, conditions (c), (e), and (f) imply that

|L′( f ,x)| ≤ ‖ f‖∞ (8)

holds for all L′ in C and all f and x; hence we can use Tychonoff’s theorem to
conclude that C is compact. Finally, the function in R

S that corresponds to L0

belongs to C, and so C is nonempty.
It now follows from Lemma F.2 that C has at least one extreme point, say L′

1.
Let us reverse our translation from linear liftings to elements of RS, and let L1 be
the function from L ∞(X ,A ,μ) to functions4 on X that corresponds to the extreme
point L′

1. We need to show that L1( f ) is measurable and bounded, that f = L1( f )
a.e., and that L1( f g) = L1( f )L1(g); the other conditions that L1 must satisfy to be a
lifting come from the conditions we placed on C.

It follows from (8) that L1( f ) is bounded, and in fact that ‖L1( f )‖∞ ≤ ‖ f‖∞.
We turn to the measurability of L1( f ) and the requirement that f = L1( f ) a.e. If
we use (7), plus the fact that f = L0( f ) a.e. (recall that L0 is a linear lifting),
we find that each f of the form χA satisfies f = L1( f ) a.e. Since μ is complete,
the measurability of L1( f ) follows for such f . The measurability of L1( f ) and the
almost everywhere validity of f = L1( f ) now follow first for simple A -measurable
functions and then for arbitrary A -measurable functions (approximate an arbitrary
function with simple functions, and use (8)).

We still need to show that L1 is multiplicative,5 in the sense that L1( f g) =
L1( f )L1(g) holds for all f and g. It is easy to see that we only need to check the
identity L1( f g) = L1( f )L1(g) in the case where 0 ≤ g ≤ 1 (use the linearity of L1

and the fact that L1(1) = 1). So assume that g belongs to L ∞(X ,A ,μ) and satisfies
0 ≤ g ≤ 1, and define functions L1+,L1− : L ∞(X ,A ,μ)→ L ∞(X ,A ,μ) by

L1+( f ) = L1( f )+ (L1( f g)−L1( f )L1(g)) and

L1−( f ) = L1( f )− (L1( f g)−L1( f )L1(g)).

It is easy to check that L1+ and L1− are linear liftings. We want to verify that
they correspond to members of C, and for this we need to check that they satisfy
(7). The keys to this will be the fact that L1 = 1

2 L1+ + 1
2 L1−, together with the

fact that if A ∈ A , then (since L1+ and L1− are linear liftings) the values of the
functions L1+(χA) and L1−(χA) belong to the interval [0,1]. Since L1 corresponds
to an element of C, it satisfies (7); thus if L0(χA)(x) = 1, then we can conclude
that L1(χA)(x) = 1 (use (7)) and then that L1+(χA)(x) = L1−(χA)(x) = 1 (use
the fact that L1 = 1

2 L1+ + 1
2 L1−, plus the fact that the values of L1+(χA) and

4We cannot yet say “from L ∞(X ,A ,μ) to L ∞(X ,A ,μ),” because we still need to verify that the
functions x �→ L1( f ,x) are measurable and bounded.
5Here is where we use the fact that L1 corresponds to an extreme point in C.


