


Appendix G
The Banach–Tarski Paradox

The usual informal statement of the Banach–Tarski paradox is as follows:

A pea can be divided into a finite number of pieces, and these pieces, after being moved by
rigid motions, can be reassembled in such a way as to produce the sun.

For a more precise statement, let us replace the pea and the sun with subsets P and
S of R

3 that are bounded and have nonempty interiors. Then the Banach–Tarski
paradox says that there exist a positive integer n, disjoint subsets A1, A2, . . . , An of
P, and disjoint subsets B1, B2, . . . , Bn of S such that

(a) P = A1 ∪A2 ∪·· ·∪An,
(b) S = B1 ∪B2 ∪·· ·∪Bn, and
(c) for each i there is a rigid motion of R3 that maps Ai onto Bi.

There are a couple of things to note here. First, this paradox depends on the axiom
of choice, and so the sets A1, . . . and B1, . . . are produced in a very nonconstructive
way. Second, the Banach–Tarski paradox implies that there is no way to extend
Lebesgue measure to the collection of all subsets of R

3 in such a way that the
extension is invariant under rigid motions and is at least finitely additive.

Let us turn to the mathematical concepts that we need for a proof of the Banach–
Tarski paradox. Let G be a group and let X be a nonempty set. Suppose (for
definiteness) that the group operation on G is written multiplicatively and that e
is the identity element of G. An action of G on X is a mapping (g,x) �→ g · x of
G×X to X that satisfies

(a) g1 · (g2 · x) = (g1g2) · x and
(b) e · x = x

for all g1, g2 in G and all x in X . We often abbreviate g · x with gx. One sometimes
says that G acts on X when we are dealing with an action of G on X .

If G acts on X , if g ∈ G, and if A is a subset of X , then gA or g ·A is the set
{y ∈ X : y = g ·a for some a in A}. Likewise, if H is a subset of G and A is a subset
of X , then H ·A is the set {y ∈ X : y = h ·a for some h in H and some a in A}.
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418 G The Banach–Tarski Paradox

G.1. (Examples)

(a) Let d be a positive integer and let G be a subgroup of the group of all invertible
d by d matrices. For S in G and x in R

d let Sx be the usual product of the matrix
S and the vector x, where x is regarded as a column vector. Then (S,x) �→ Sx
gives an action of G on R

d .
(b) Recall that a d by d matrix S = (si j) is orthogonal if its columns are orthogonal

to one another and have norm 1 (with respect to the usual Euclidean norm ‖·‖2).
In other words, S is orthogonal if ∑i si jsik is 1 if j = k and is 0 if j �= k. The set of
all d by d orthogonal matrices with determinant 1 is a group, which is called the
special orthogonal group and is denoted by SO(d). Such groups are, of course,
groups of the sort described in the previous example.

(c) Now let G3 be the set of all rigid motions T : R3 → R
3 of the form T (x) =

Sx+ b, where S ∈ SO(3) and b ∈ R
3. Thus G3 is a group; it acts on R

3 by
(T,x) �→ T (x).

(d) Let G be an arbitrary group. Then (g,g′) �→ g ·g′, where · is the group operation
of G, gives an action of G on G.

Equidecomposability

Now suppose that G acts on the set X and that A and B are subsets of X . Then A and
B are called G-equidecomposable (or simply equidecomposable), or A is said to be
G-equidecomposable with B if there exist a positive integer n, disjoint subsets A1,
. . . , An of A, disjoint subsets B1, . . . , Bn of B, and elements g1, . . . , gn of G such
that

(a) A = A1 ∪A2 ∪·· ·∪An,
(b) B = B1 ∪B2 ∪·· ·∪Bn, and
(c) Bi = gi ·Ai holds for each i.

Thus A and B are G-equidecomposable if and only if there is a bijection f : A→B
that is defined piecewise1 by the action of G on X—that is, for which there are
disjoint subsets A1, . . . , An of A that satisfy A = A1 ∪A2 ∪·· ·∪An and elements g1,
. . . , gn of G such that f is given by f (x) = gi · x if x ∈ Ai, for i = 1, . . . , n.

It is easy to check that if g : A → B and f : B →C are bijections that are defined
piecewise by the action of G on X (see the preceding paragraph), then f ◦g : A →C
is also a piecewise defined bijection. Since the identity map (from a subset A of X
to itself) is such a piecewise defined bijection, as are the inverses of such bijections,
it follows that the relation of G-equidecomposability is an equivalence relation.

Recall the Schröder–Bernstein theorem from set theory: if the set A has the same
cardinality as some subset of the set B, and if B has the same cardinality as some
subset of A, then A and B have the same cardinality. In other words, if there is a

1This is perhaps not entirely standard terminology.
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(b) Use part (a) to show that if T is an orthogonal operator on R
3 that has

determinant 1 and has 1 among its eigenvalues, then there is an orthonormal
basis of R3 with respect to which T has matrix

⎛

⎝
1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎞

⎠ ,

where θ is a real number. Conclude that T is a rotation through an angle of θ
about some line through the origin.

6. The preceding exercises outline a proof that every matrix in SO(3) gives a
rotation of R

3 about some line through the origin. Prove the converse: every
rotation of R3 about a line through the origin corresponds to a matrix in SO(3).

Notes

The fundamental paper by Banach and Tarski is [2]. The book by Wagon [122] is
very thorough and rather up-to-date.
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1. Let V be a subspace of Rd (possibly equal to R
d), let {ei} be an orthonormal

basis4 of V , and let A be the matrix of T with respect to {ei}. Show that the
conditions

(i) (T x,Ty) = (x,y) holds for all x, y in V ,
(ii) A is an orthogonal matrix, and

(iii) AtA = I

are equivalent. Thus we can call the operator T orthogonal if its matrix with
respect to some (and also every) orthonormal basis of V is an orthogonal matrix.

2. Suppose that T is an orthogonal operator on R
3.

(a) Show that det(T ) is 1 or −1.
(b) Show that T has at least one real eigenvalue. (Hint: The characteristic

polynomial of T is a cubic polynomial.)
(c) Show that every real eigenvalue of T has absolute value 1.

3. Let T be an orthogonal operator on R
3, let λ be a real eigenvalue of T , and let x

be an eigenvector of T that corresponds to the eigenvalue λ .

(a) Let x⊥ be the set of all vectors y in R
3 that are orthogonal to x (i.e., the set

of all y such that (x,y) = 0). Show that x⊥ is a linear subspace of R3 that is
invariant under T , in the sense that T (y) ∈ x⊥ whenever y ∈ x⊥.

(b) Let Tx⊥ be the restriction of T to x⊥. Show that the determinants of T and
Tx⊥ are related by det(T ) = λ det(Tx⊥).

4.(a) Let S be an orthogonal operator on R
2, or on a two-dimensional subspace of

R
3, and suppose that det(S) = −1. Show that 1 and −1 are both eigenvalues

of S. (Hint: This can be proved using elementary calculations involving the
matrix of S; no big theorems are needed.)

(b) Use part (a) to show that if T is an orthogonal operator on R
3 that has

determinant 1 and has −1 among its eigenvalues, then the eigenvalues of T
are −1 (with multiplicity 2) and 1 (with multiplicity 1).

(c) Conclude that if T is an orthogonal operator on R
3 that has determinant 1 and

has −1 among its eigenvalues, then T is a rotation through an angle of π about
some line through the origin.

5.(a) Let S be an orthogonal operator on R
2, or on a two-dimensional subspace of

R
3, and suppose that det(S) = 1. Show that for any orthonormal basis of the

two-dimensional space, there are real numbers a and b such that a2 + b2 = 1

and such that the matrix of S with respect to that basis is

(
a −b
b a

)

and hence

has the form

(
cosθ −sinθ
sinθ cosθ

)

for some real number θ .

4An orthonormal basis for a finite-dimensional inner product space V is a basis {ei} of V such that
(ei,e j) = 0 if i �= j and (ei,e j) = 1 if i = j.
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bijection from A onto a subset of B and a bijection from B onto a subset of A, then
there is a bijection from A onto B (see A.7 in Appendix A).

The following proposition gives an analogous result for G-equidecomposability.

G.2. (Proposition) Suppose that the group G acts on the set X and that A and
B are subsets of X. If A is G-equidecomposable with a subset of B and if B is G-
equidecomposable with a subset of A, then A and B are G-equidecomposable with
one another.

Proof. Suppose that A and B are as in the statement of the proposition. Then there
are injections f : A → B and g : B → A that are defined piecewise by the action of
G on X . Let us look at how elements of A and B arise as images of elements of
B and A under the functions g and f . As is rather standard in proving versions of
the Schröder–Bernstein theorem, we express this in terms of ancestors. Consider an
element a of A. We call an element b of B a parent of a if a= g(b), and an element a′
of A a grandparent of a if a = g( f (a′)). We continue in this way, considering great-
grandparents, . . . . We view the parents, grandparents, . . . , as ancestors. In a similar
way, we define the ancestors of the elements of B. For example, the ancestors of b are
the elements of the sequence f−1(b), g−1( f−1(b)), f−1(g−1( f−1(b))), . . . . Since f
and g are injective but not necessarily surjective, these sequences may be of any
length, containing 0, 1, 2, . . . , or even infinitely many terms. Let us define subsets
Ae, Ao, and A∞ of A to be the sets of elements of A for which the corresponding
sequence is of even length, of odd length, or infinitely long. We define subsets Be,
Bo, and B∞ of B similarly. It is not difficult to check that f maps Ae onto Bo and
A∞ onto B∞, and that g maps Be onto Ao. It follows that we can define a bijection
h : A → B by

h(x) =

{
f (x) if x ∈ Ae or x ∈ A∞, and

g−1(x) if x ∈ Ao.

Since f and g are injective and defined piecewise by the action of G, h is also defined
piecewise by the action of G, and the proof is complete. �	

Finally, here is a precise version of the Banach–Tarski paradox; we prove it
below.

G.3. (Theorem—the Banach–Tarski paradox) Let A and B be subsets of R3 that
are bounded and have nonempty interiors, and let G3 be the group of rigid motions
discussed in Example G.1(c). Then A and B are G3-equidecomposable.

Note that the Banach–Tarski paradox says that if {Ai} and {Bi} are the sets
into which A and B are decomposed, then each Ai can be mapped onto the
corresponding set Bi using a rigid motion from G3. It does not say that the pieces
Ai into which A is decomposed can be moved along continuous paths, eventually
becoming the corresponding pieces Bi and never colliding with the other pieces.
It was long an open problem whether such a continuous decomposition is possible.
However, Wilson [129] has recently proved that such decompositions are possible.
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In particular, he proves that there are continuous maps t �→ gi
t from [0,1] to G3 such

that

(a) gi
0 ·Ai = Ai for all i,

(b) gi
1 ·Ai = Bi for all i, and

(c) gi
t ·Ai ∩g j

t ·A j =∅ for all t in [0,1] and all i and j for which i �= j.

Paradoxical Sets

Suppose that the group G acts on the set X . A subset A of X is G-paradoxical, or
simply paradoxical, if it is equal to A1 ∪A2 for some pair A1, A2 of disjoint subsets
of A, each of which is G-equidecomposable with A.

The following consequence of the Schröder–Bernstein-like theorem above makes
it slightly easier to prove that a set is paradoxical: we can show that a set A is
paradoxical by producing disjoint subsets A1 and A2 of A that are equidecomposable
with A; we do not need to check that A = A1 ∪A2.

G.4. (Corollary) Suppose that the group G acts on the set X. A subset A of X
is G-paradoxical if it includes disjoint subsets A1 and A2, each of which is G-
equidecomposable with A.

Proof. Suppose that A, A1, and A2 are as in the statement of the corollary. Then
A − A1 is equidecomposable with a subset of A (it is a subset of A), and A is
equidecomposable with a subset of A−A1, namely with A2. Thus Proposition G.2
implies that A and A−A1 are equidecomposable, and so A1 and A−A1 form the
required partition of A. �	

It is a consequence of the Banach–Tarski paradox that

the ball {x ∈ R
3 : ‖x‖ ≤ 1} is G3-paradoxical (1)

(if we divide the ball into two pieces by cutting it with a plane through the origin,
then the Banach–Tarski paradox says that the ball is equidecomposable with each
of the two pieces).

Let us check that we can also derive the Banach–Tarski paradox from (1). So
suppose that (1) holds. Certainly if some closed ball is G3-paradoxical, then so are
all closed balls (two sets that are equidecomposable are still equidecomposable if
they are translated or if both are scaled by the same constant). Let A and B be the sets
in the statement of the Banach–Tarski paradox, let B0 be a closed ball included in A,
and let r be the radius of B0. Let B1, B2, . . . be disjoint closed balls, each with radius
r. Since B0 is the union of a pair of disjoint sets, each of which is equidecomposable
with B0, it follows that B0 is equidecomposable with B1 ∪ B2. By repeating that
argument we can conclude that B0 is equidecomposable with B1 ∪ B2 ∪ B3, and
eventually that it is equidecomposable with B1 ∪B2 ∪ ·· · ∪ Bn for an arbitrary n.
Since the set B in the statement of the Banach–Tarski paradox is bounded, we can
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Since S and S−D are equidecomposable, while S−D is paradoxical, it follows
from Corollary G.4 that S is paradoxical. �	
G.10. (Proposition) The ball B with its center removed, {x ∈ R

3 : 0 < ‖x‖ ≤ 1},
is SO(3)-paradoxical.

Proof. For each subset E of S let c(E) be the conical piece of the ball B defined by

c(E) = {x ∈R
3 : x = ts for some t in (0,1] and some s in E}.

Thus, for example, c(S) is the ball B with its center removed. We know from
Proposition G.9 that the sphere S is SO(3)-paradoxical. If S = C∪D is a partition
of S into sets that are SO(3)-equidecomposable with S, then c(S) = c(C)∪ c(D) is
a partition of c(S) into sets that are SO(3)-equidecomposable with c(S); to see this,
for instance, in the case of c(S) and c(C), take a bijection f : S →C that is piecewise
defined by the group action, and note that tx �→ t f (x) gives a bijection from c(S) to
c(C) that is piecewise defined by the group action. Since c(S) is the ball with its
center removed, the proof is complete. �	

Now we can complete the proof of (1) and hence of the Banach–Tarski paradox:

G.11. (Theorem) The ball B is G3-paradoxical, where G3 is the group of
isometries defined in Example G.1(c).

Proof. Let L be a line in R
3 that does not pass through the origin 0 but lies close

enough to it that none of the rotations about L map 0 to a point outside the ball B
(note that the rotations about L belong to G3 but not to SO(3)). Let ρ0 be a rotation
about L through an angle θ , where θ/2π is irrational, in which case the points 0,
ρ0(0), ρ2

0 (0), . . . are distinct. Let D0 = {0}∪{ρn
0(0) : n ≥ 1} and D1 = {ρn

0 (0) : n≥
1}. Then B=(B−D0)∪D0 and B−{0}=(B−D0)∪D1, and we can modify the last
part of the proof of Proposition G.9 to conclude first that B is G3-equidecomposable
with B−{0} and then, since B−{0} is SO(3)-paradoxical (Proposition G.10), that
B is G3-paradoxical. �	

Exercises

Some of the linear algebra needed for this section is developed in the following
exercises. In particular, these exercises give a proof that the rotations of R3 about
lines through the origin are exactly the actions on R

3 induced by the elements of
SO(3).
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equidecomposable with A, we can choose a partition G1, G2, . . . , Gn of G, a partition
A1, A2, . . . , An of A, and elements g1, g2, . . . , gn of G such that Ai = gi ·Gi for each
i. Then the sets G1 ·C, G2 ·C, . . . , Gn ·C form a partition of X , the sets A1 ·C, A2 ·C,
. . . , An ·C form a partition of A ·C, and Ai ·C = gi · (Gi ·C) holds for each i. In other
words, X and A ·C are equidecomposable. A similar argument shows that X and B ·C
are equidecomposable, and so X is G-paradoxical. �	

Let S be the unit sphere {x ∈ R
3 : ‖x‖ = 1}, and let B be the unit ball {x ∈ R

3 :
‖x‖ ≤ 1}.

G.8. (Proposition) Let F be a subgroup of SO(3) that is free on two generators.
Then there is a countable subset D of the sphere S such that S−D is F-paradoxical
and hence SO(3)-paradoxical.

Proof. The elements of F , since they belong to SO(3), are distance-preserving as
operators on R

3; hence we can view them as acting on the sphere S. Each element
of F (other than the identity element) is a nontrivial rotation about a line through
the origin (see the remarks just before the statement of Proposition G.7) and so has
exactly two fixed points on S. Let D be the collection of all fixed points on S of
elements of F other than e. Since the group F is countable, D is also countable.

The elements of F have no fixed points in S −D, and S − D is closed under
the action of elements of F (for if x ∈ S−D, f ∈ F , and f x ∈ D, then f x would
be a fixed point of some nontrivial element f ′ of F , from which it would follow
that f−1 f ′ f x = x and hence that f−1 f ′ f = e, which contradicts the assumption that
f ′ �= e). It now follows from Proposition G.7 that S−D is F-paradoxical. Since F
is a subgroup of SO(3), S−D is also SO(3)-paradoxical. �	
G.9. (Proposition) The sphere S is SO(3)-paradoxical.

Proof. Let F be a subgroup of SO(3) that is free on two generators, and let D be
a countable subset of S such that S−D is F-paradoxical (see Proposition G.8). We
begin the proof by constructing an element ρ0 of SO(3) such that the sets D, ρ0(D),
ρ2

0 (D), . . . are disjoint. First we choose as axis for ρ0 a line L that passes through the
origin but through none of the points in D. We can describe the nontrivial rotations
with axis L in terms of values (i.e., angles) in the interval (0,2π). For each pair of
points x, y in S−D there is at most one rotation about L that takes x to y. Thus there
are only countably many rotations ρ about L for which D∩ ρ(D) is nonempty. A
similar argument shows that for each n there are at most countably many rotations
ρ for which D∩ ρn(D) is nonempty. Since there are uncountably many rotations
about L, we can choose a rotation ρ0 such that for every n the sets D and ρn

0 (D) are
disjoint. It follows that for all k and n the sets ρk

0(D) and ρk+n
0 (D) are disjoint, and

hence that the sequence D, ρ0(D), ρ2
0 (D), . . . consists of disjoint sets.

Claim. The sets S and S−D are SO(3)-equidecomposable.
Let D1,∞ = ∪∞

i=1ρ i
0(D) and let D0,∞ = ∪∞

i=0ρ i
0(D) = D ∪ D1,∞. Then

S = (S−D0,∞)∪D0,∞ and S−D = (S−D0,∞)∪D1,∞. Since D1,∞ = ρ0 · D0,∞, it
follows that S and S−D are SO(3)-equidecomposable, and the claim is established.
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choose n large enough that B can be covered with n closed balls of radius r. This
implies that B is equidecomposable with a subset of B1 ∪B2 ∪ ·· · ∪Bn, and hence
with a subset of B0, which is itself a subset of A. A similar argument tells us that
A is equidecomposable with a subset of B, and then Proposition G.2 implies that A
and B are equidecomposable. Thus the Banach–Tarski paradox follows from (1).

We will prove the Banach–Tarski paradox by proving (1). We need to gather
some more tools.

Generators and Free Groups

Let G be a group, let S be a set of elements of G, and let S−1 = {u ∈ G :
u = v−1 for some v in S}. The smallest subgroup of G that includes S is called the
subgroup generated by S. The subgroup of G generated by S has a more constructive
description; namely it consists of the elements of G that are represented2 by a word
of the form

s1s2 · · · sn,

where n is a nonnegative integer and s1, . . . , sn are elements of S∪S−1.
Now suppose that S generates G and that S∩ S−1 = ∅. Note that if s ∈ S, then

the words ss−1, ss−1ss−1, ss−1ss−1ss−1, . . . all represent the same element of G,
namely e. Furthermore, a word can be modified by repeatedly removing substrings
of the form ss−1 or s−1s, where s∈ S, without changing the element of G represented
by the word. We can continue this process until we reach a word in which no element
of S appears adjacent to its inverse. A word in which no element of S appears
adjacent to its inverse is called a reduced word.

Let us continue to assume that S∩ S−1 = ∅. The group G is said to be free on
S, or to be freely generated by S, if S generates G and each element of G can be
represented in only one way by a reduced word over S. If G is free on S and if S has
n elements, then one sometimes says that G is free on n generators.

G.5. (Proposition) Let F be a free group on two generators. Then the set F is
paradoxical under the action of the group F on it.

Proof. Suppose that F is freely generated by σ and τ and that e is the identity
element of F . Let Fσ be the set of all elements of F that can be represented with
reduced words that begin with σ , and define Fσ−1 , Fτ , and Fτ−1 analogously. The sets
{e}, Fσ , Fσ−1 , Fτ , and Fτ−1 then form a partition of the set F . We can check that F
and Fσ ∪Fσ−1 are F-equidecomposable by writing F = Fσ ∪({e}∪Fσ−1 ∪Fτ ∪Fτ−1)
and noting that Fσ = e ·Fσ and Fσ−1 = σ−1 · ({e}∪Fσ−1 ∪Fτ ∪Fτ−1). A similar
argument shows that F is also F-equidecomposable with Fτ ∪Fτ−1 . Since F is F-

2The word s1s2 · · ·sn is the sequence {si}n
i=1, and the element of G represented by the word is the

group-theoretic product of s1, s2, . . . , sn. The empty word, where n = 0, gives the identity element
of G.
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equidecomposable with Fσ ∪Fσ−1 and with Fτ ∪Fτ−1 , it follows from Corollary G.4
that F is F-paradoxical. �	
G.6. (Proposition) The special orthogonal group SO(3) has a subgroup that is
free on two generators.

Proof. Let us begin with the question of how we might check that suitably chosen
elements σ and τ of SO(3) freely generate a subgroup of SO(3). We need to show
that distinct reduced words w1 and w2 in σ , σ−1, τ , and τ−1 represent distinct
elements of SO(3). So assume that w1 and w2 are distinct reduced words that
represent the same element of SO(3). We can assume that they do not begin (on the
left) with the same element, since otherwise we can remove elements from the left
until w1 and w2 no longer begin with equal elements (this does not change whether
the elements of SO(3) represented by w1 and w2 are equal or different). So we can
assume that either w1 and w2 begin with different ones of σ , σ−1, τ , and τ−1, or
else one of w1 and w2 is the empty word and the other is not. Our job is to choose
σ and τ in such a way that we can conclude that the elements of G represented by
such w1 and w2 are necessarily distinct.

Suppose that we can find an element u of R3, plus disjoint subsets S+, S−, T+,
and T− of R3 (none of which contains u), such that operating on u by the element of
G represented by a non-null reduced word w gives an element of S+, S−, T+, or T−,
according as the left-hand element of w is σ , σ−1, τ , or τ−1. If we can find such an
element u and sets S+, S−, T+, and T−, and if w1 and w2 are distinct reduced words
as described in the preceding paragraph, then operating on u by the group elements
represented by w1 and w2 will give different elements of R3, and we will have a
proof that w1 and w2 represent different elements of SO(3).

The argument just outlined will work if we can verify that our choices of σ , τ , u,
S+, S−, T+, and T− (with the choices still to be made) satisfy

σ(S+∪T+∪T−∪{u})⊆ S+,

σ−1(S−∪T+∪T−∪{u})⊆ S−,

τ(S+∪S−∪T+∪{u})⊆ T+, and

τ−1(S+∪S−∪T−∪{u})⊆ T−.

Now let us define elements σ and τ of SO(3) by

σ =

⎛

⎝
3/5 4/5 0

−4/5 3/5 0
0 0 1

⎞

⎠ and τ =

⎛

⎝
1 0 0
0 3/5 −4/5
0 4/5 3/5

⎞

⎠ ,

an element u of R3 by u = (0,1,0)t , and subsets S+, S−, T+, and T− of R3 by

S+ = { 1
5k (x,y,z)

t : k ≥ 1, x = 3y mod 5, x �= 0 mod 5, and z = 0 mod 5},
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S− = { 1
5k (x,y,z)

t : k ≥ 1, x =−3y mod 5, x �= 0 mod 5, and z = 0 mod 5},

T+ = { 1
5k (x,y,z)

t : k ≥ 1, z = 3y mod 5, z �= 0 mod 5, and x = 0 mod 5}, and

T− = { 1
5k (x,y,z)

t : k ≥ 1, z =−3y mod 5, z �= 0 mod 5, and x = 0 mod 5}

(in these definitions k, x, y, and z are integers; furthermore, the t’s on the vectors here
indicate transposes, and so we are dealing with column vectors, rather than with the
row vectors that are listed). It is now a routine calculation, which is left to the reader,
to show that the sets S+, S−, T+, and T− are disjoint, that they do not contain u, and
that the inclusions specified above indeed hold. With that we have shown that σ and
τ freely generate a subgroup of SO(3), and the proof of the proposition is complete.

�	

Details for the Banach–Tarski Paradox

The following proposition will let us use the free group on two generators that we
just constructed to get some paradoxical subsets of R3. It is here that the axiom of
choice is used.

We will be using the fact that every element of SO(3), when interpreted as an
action on R

3, is a rotation about a line through the origin,3 and the fact that each
such rotation is given by an element of SO(3). For proofs of these results, see the
exercises at the end of this appendix.

G.7. (Proposition) Let G be a group for which the action of G on G is paradoxical,
let (g,x) �→ g · x be an action of G on a set X, and suppose that this action has no
nontrivial fixed points (in other words, suppose that if g ·x = x holds for some g and
x, then g = e). Then the action of G on X is paradoxical.

Proof. Let x be an element of X , and let o(x) be the orbit of x under the action of G.
That is, o(x) = {g · x : g ∈ G}. Define a relation ∼ on X by letting x ∼ y hold if and
only if y = g ·x for some g in G. It is easy to check that ∼ is an equivalence relation
and that the equivalence classes of ∼ are the orbits of the action of G on X . Use the
axiom of choice to create a set C that contains one point from each orbit. We’ll use
the set C to show that X is G-paradoxical.

Since G is G-paradoxical, there is a partition A ∪ B of G such that G is G-
equidecomposable with A and with B. Then X = G ·C, and the sets A ·C and
B ·C form a partition of X (to check the disjointness of A ·C and B ·C, use the
assumption that the action of G on X has no fixed points, together with the fact that
C contains exactly one element from each equivalence class under ∼). Since G is

3The identity element of SO(3) may seem to be an exception. However, its action on R
3 can be

viewed as a rotation through the angle 0 about an arbitrary line through the origin.


