


Appendix H
The Henstock–Kurzweil and McShane Integrals

In this appendix we look at the consequences of making what may seem to be a small
change to the definition of the Riemann integral. The modified definition gives what
is often called the Henstock–Kurzweil integral or the generalized Riemann integral.
It will be easy to see that the Henstock–Kurzweil integral is an extension of the
Riemann integral; we will see later that it is in fact also an extension of the Lebesgue
integral.

Near the end of this appendix we look at another modification of the definition
of the Riemann integral; this modification gives the McShane integral. We will see
that the McShane integral turns out to be equivalent to the Lebesgue integral.

Most of the results in this appendix are presented as exercises, often with hints.
Let [a,b] be a closed bounded interval. Recall (see Sect. 2.5) that a partition of

[a,b] is a finite sequence {ai}k
i=0 of real numbers such that

a = a0 < a1 < · · ·< ak = b,

and that a tagged partition of [a,b] is a partition of [a,b], together with a sequence
{xi}k

i=1 of real numbers (called tags) such that ai−1 ≤ xi ≤ ai holds for each i (in
other words, such that for each i the value xi belongs to the interval [ai−1,ai]). We
will often denote a partition or a tagged partition by a letter such as P . Recall also
that the norm or mesh of a partition or tagged partition P , written ‖P‖, is defined
by ‖P‖= maxi(ai − ai−1).

Let f be a real-valued function on an interval [a,b], and let P be a tagged
partition of [a,b]. Recall that the Riemann sum R( f ,P) corresponding to f and
P is the weighted sum of values of f given by

R( f ,P) =
k

∑
i=1

f (xi)(ai − ai−1).

We saw in Proposition 2.5.7 that the Riemann integral of f over the interval [a,b]
is the limit of Riemann sums R( f ,P), where the limit is taken as the mesh of P
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approaches 0. More precisely, f is Riemann integrable, with integral L, if and only
if for every positive number ε there is a positive number δ such that

|R( f ,P)−L|< ε holds for every P that satisfies ‖P‖< δ .

It seems plausible that it might be worthwhile to require some of the subintervals
in a tagged partition P to be rather narrow (perhaps in regions where the function
f is varying rapidly), while allowing other subintervals to be wider. This is what the
Henstock–Kurzweil integral does; we turn to the details.

A real-valued function δ whose domain includes the interval [a,b] is said to be a
gauge on [a,b] if it satisfies δ (x) > 0 at each x in [a,b]. Given a gauge δ , a tagged
partition P of [a,b] is said to be δ -fine, or subordinate to δ , if

[ai−1,ai]⊆ (xi − δ (xi),xi + δ (xi))

holds for each i. So the subintervals in a δ -fine tagged partition P must be very short
in the parts of [a,b] where all the values of δ are close to 0, while the subintervals
in other parts of [a,b] can be longer.

Now consider a function f : [a,b]→ R. Note that, in contrast to our discussion
of the Riemann integral, we are not assuming that f is bounded, although we are
for now still assuming that it is real-valued (and not [−∞,+∞]-valued). Then f is
Henstock–Kurzweil integrable on [a,b] if there is a number L such that for every
positive number ε there is a gauge δ on [a,b] such that

|R( f ,P)−L|< ε holds for every δ -fine tagged partition P of [a,b].

The number L is called the Henstock–Kurzweil integral of f over the interval [a,b]
and is denoted by (H)

∫ b
a f or by (H)

∫ b
a f (x)dx. In cases where there does not seem

to be a significant chance of confusion, we may simply write
∫ b

a f or
∫ b

a f (x)dx.
See Exercises 11 and 12 for some nontrivial examples of Henstock–Kurzweil

integrable functions.
The preceding definition would not make sense if for some function f there were

two values of L, each satisfying the definition of the integral of f . The following
exercise gives the tool needed to check (in Exercise 2) that such pathology does not
occur.

Exercises

1. Cousin’s lemma says that if δ is a gauge on an interval [a,b], then there is a
δ -fine partition of [a,b]. Prove Cousin’s lemma

(a) with a bisection argument (if [a,b] fails to have a δ -fine partition, then so
does either its left half or its right half, . . . ), and
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and that with this choice of P3 and P4 we have

|R(| f |,P1)−R(| f |,P2)| ≤ R( f ,P3)−R( f ,P4).

Use this inequality to derive the Cauchy condition for | f | from the Cauchy
condition for f .)

(b) Show that if f : [a,b] → R is McShane integrable, then f+ and f−, the
positive and negative parts of f , are McShane integrable. (Hint: Express f+

and f− as simple algebraic expressions involving | f | and f .)
(c) Conclude that the McShane integral is equivalent to the Lebesgue integral.

In other words, an arbitrary function f : [a,b]→R is McShane integrable if
and only if it is Lebesgue integrable, and in that case (M)

∫ b
a f = (L)

∫ b
a f .

(See Exercise 31.)
(d) Show that part (a) of this exercise cannot be extended to the Henstock–

Kurzweil integral. That is, show by example that the Henstock–Kurzweil
integrability of a function f : [a,b] → R does not imply the Henstock–
Kurzweil integrability of | f |. (Hint: Once again, consider a function on [a,b]
that has an improper Riemann integral but is not Lebesgue integrable.)

Notes

There are many books and papers on the Henstock–Kurzweil integral. Two standard
and thorough ones are by Bartle [5] and Gordon [52]. See also the paper by
Bongiorno [16] in the handbook edited by Pap [95].



H The Henstock–Kurzweil and McShane Integrals 431

(b) by analyzing

sup{t ∈ [a,b] : there is a δ -fine partition of [a, t]}.

2. Show that the value of the Henstock–Kurzweil integral is well defined. That
is, show that if f is Henstock–Kurzweil integrable and if L1 and L2 are real
numbers, each of which satisfies the definition of the Henstock–Kurzweil
integral of f , then L1 = L2. (Hint: Use Exercise 1.)

3. Show that if f : [a,b]→R is Riemann integrable, then f is Henstock–Kurzweil
integrable and (H)

∫ b
a f = (R)

∫ b
a f . (The proof can be very short.)

4. Show that the set of Henstock–Kurzweil integrable functions on [a,b] is a vector
space and that the Henstock–Kurzweil integral is a positive linear functional
on it.

5. (Cauchy criterion for Henstock–Kurzweil integrability) Show that a function
f : [a,b]→ R is Henstock–Kurzweil integrable if and only if for every positive
number ε there is a gauge δ such that |R( f ,P1)− R( f ,P2)| < ε holds
whenever P1 and P2 are δ -fine tagged partitions of [a,b].

6. Suppose that δ is a gauge on [a,b] and that x is a point in [a,b]. Then there is
a gauge δ ′ that satisfies δ ′ ≤ δ and is such that each δ ′-fine tagged partition
contains x as one of its tags. In many situations this allows us to force specified
points to be tags in the partitions under consideration. (Hint: Use

δ ′(t) =

{
min(δ (t), |t − x|/2) if t �= x, and

δ (x) if t = x

to define δ ′.)
7. Suppose that δ is a gauge on [a,b] and that P is a δ -fine tagged partition

of [a,b] that contains x among its tags. If x belongs to the interior of one of
the subintervals of P , say, ai−1 < x < ai, and if we define a partition P ′ to
contain the same intervals and tags as P , except that the interval [ai−1,ai] is
replaced with the two intervals [ai−1,x] and [x,ai], with x serving as tag in
each of these new intervals, then P ′ is also a δ -fine partition of [a,b] and
R( f ,P ′) = R( f ,P) holds for each function f on [a,b].

8. Show that if f : [a,b] → R is Henstock–Kurzweil integrable on [a,b] and if
g : [a,b] → R agrees with f everywhere in [a,b] except perhaps at a finite
number of points, then g is Henstock–Kurzweil integrable on [a,b] and

∫ b
a g =

∫ b
a f .

9. Show that if a < c < b and if f is Henstock–Kurzweil integrable on [a,c] and on
[c,b], then f is Henstock–Kurzweil integrable on [a,b] and

∫ b
a f =

∫ c
a f +

∫ b
c f .

(Hint: Use Exercises 6 and 7.)
10. Show that if f is Henstock–Kurzweil integrable on [a,b] and if [c,d] is a

subinterval of [a,b], then f is Henstock–Kurzweil integrable on [c,d].
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11. Let f : [0,1]→ R be defined by

f (x) =

{
n if x ∈ [1− 1

2n−1 ,1− 1
2n ), n = 1, 2, . . . , and

0 if x = 1.

Using only the definition and basic properties of the Henstock–Kurzweil
integral (that is, without using deeper results, such as those given in Exercises 14
and 17), verify that f is Henstock–Kurzweil integrable on [0,1] and that

∫ 1

0
f dx =

∞

∑
n=1

n
2n .

12. Let f : [0,1] → R be the characteristic function of the set of rational numbers
in [0,1]. Show that f is Henstock–Kurzweil integrable, with

∫ 1
0 f equal to 0.

(Hint: Let {rn}∞
1 be an enumeration of the rationals in [0,1]. Given a positive

value ε , define a gauge δ by letting δ (rn) = ε/2n+1 for each n, while letting
δ (x) = 1 for all other values of x. Check that each δ -fine partition P satisfies
|R( f ,P)|< ε .)

13.(a) Let f : [a,b]→ R be a function that vanishes almost everywhere. Show that
f is Henstock–Kurzweil integrable, with

∫ b
a f equal to 0. (Hint: Suppose

that ε > 0. For each positive integer n first define An by An = {x ∈ [a,b] :
n− 1 < | f (x)| ≤ n} and then choose an open set Un such that An ⊆ Un and
λ (Un) < ε/n2n. Define a gauge δ by letting δ (x) be the distance from x to
the complement of Un if x ∈ An and letting δ (x) = 1 if x /∈ ∪nAn. Find an
upper bound for |R( f ,P)| that is valid for all δ -fine partitions P of [a,b].)

(b) Suppose that the functions f ,g : [a,b] → R agree almost everywhere and
that f is Henstock–Kurzweil integrable. Show that g is Henstock–Kurzweil
integrable and that

∫ b
a g =

∫ b
a f .

We can now define the Henstock–Kurzweil integral for [−∞,+∞]-valued func-
tions: one calls a function f : [a,b] → [−∞,+∞] Henstock–Kurzweil integrable if
there is a function g : [a,b] → R that is Henstock–Kurzweil integrable and agrees
with f almost everywhere. The Henstock–Kurzweil integral of f is then defined to
be that of g. Exercise 13(b) implies that the resulting concepts of integrability and
integral are well defined. One can deal in a similar way with the Henstock–Kurzweil
integral for functions that are defined only almost everywhere.

A tagged subpartition of an interval [a,b] is a finite indexed collection
{[ci,di]}k

i=1 of nonoverlapping1 subintervals of [a,b], together with tags {xi}k
i=1

such that xi ∈ [ci,di] holds for each i. So a tagged subpartition is like a tagged
partition, except that the intervals involved may not cover the entire interval [a,b].
Note that with subpartitions we cannot do as we did with partitions and use a

1Let {Ii} be an indexed collection of intervals. These intervals are nonoverlapping if for all i and
j, the intersection Ii ∩ Ij contains at most one point.



H The Henstock–Kurzweil and McShane Integrals 437

Furthermore, it is easy to see that the Henstock–Kurzweil integral is an extension
of the McShane integral: since every δ -fine tagged partition is a δ -fine freely tagged
partition, it follows that if L is a value such that |R( f ,P)−L|< ε holds for every
δ -fine freely tagged partition, then this same inequality holds for every δ -fine tagged
partition. We will soon see that the McShane integral is equivalent to the Lebesgue
integral.

24. Show that the McShane integral is an extension of the Riemann integral:
if f : [a,b] → R is Riemann integrable, then f is McShane integrable and the
McShane and Riemann integrals of f are equal. (Hint: Modify the proof of
Proposition 2.5.7.)

25. Show that the set of McShane integrable functions on [a,b] is a vector space and
that the McShane integral is a positive linear functional on it (see Exercise 4).

26. Formulate and prove a Cauchy criterion for McShane integrability (see Exer-
cise 5).

27. Show that Exercises 9 and 10, which relate integrals on an interval to integrals
on its subintervals, also hold for the McShane integral.

28. Prove a version of Exercise 13 for the McShane integral. That is, prove that sets
of Lebesgue measure zero behave as might be expected.

29. Formulate and prove the Saks–Henstock lemma (see Exercise 14) for the
McShane integral (your new version should involve freely tagged partitions and
subpartitions, and not just tagged ones).

30. Formulate and prove the monotone convergence theorem (see Exercise 17) for
the McShane integral.

31. Show that a nonnegative function f : [a,b] → R is McShane integrable if and
only if it is Lebesgue integrable, and that in that case (M)

∫ b
a f = (L)

∫ b
a f . (Hint:

Use ideas from Exercises 18 and 22.)
32. In this exercise, we prove that the McShane and Lebesgue integrals (for

functions on [a,b]) are equivalent.

(a) Show that if f : [a,b]→R is McShane integrable, then | f | is also McShane
integrable. (Hint: Use the Cauchy criterion for McShane integrability.
Suppose that P1 and P2 are δ -fine freely tagged partitions of [a,b], where
P1 has subintervals3 {Ii} and tags {xi} and P2 has subintervals{Jj} and
tags {y j}. We will consider freely tagged partitions P3 and P4 of [a,b]
whose subintervals are the nondegenerate intervals of the form Ii ∩ Jj and
whose tags (where P3 has tags {ui, j} and P4 has tags {vi, j}) are such that
both ui, j and vi, j belong to the set {xi,y j}. Check that in such cases P3 and
P4 are both δ -fine. Check also that for each i and j we can choose ui, j and
vi, j such that

| | f (xi)|− | f (y j)| | ≤ f (ui, j)− f (vi, j),

3Here we name the subintervals, rather than the division points, since we will also be considering
partitions consisting of subintervals of the form Ii ∩ Jj; we will need to relate Ii ∩ Jj to Ii and Jj ,
and this is awkward to do in terms of division points.
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(Hint: It is enough to deal with the function f that agrees with F ′ where F is
differentiable and that vanishes elsewhere. Let {ti} be a sequence consisting
of the points at which F is not differentiable. Suppose that ε > 0, and define
δ on the points ti by choosing positive values δ (ti) that are so small that
∑i |(F(bi)−F(ai)|< ε whenever {[ai,bi]} is a finite sequence of intervals such
that ti ∈ [ai,bi] and [ai,bi] ⊆ (ti − δ (ti), ti + δ (ti)) hold for each i. Check that
δ can be extended to a gauge (also called δ ) on [a,b] such that each δ -fine
partition P of [a,b] satisfies |R( f ,P)− (F(b)−F(a))|< 2ε .)

The McShane integral is another generalization of the Riemann integral; its
definition is given by a slight modification of the definition of the Henstock–
Kurzweil integral.

Let us consider a generalization of the concept of a tagged partition in which
the tags xi are no longer required to belong to the corresponding intervals [ai−1,ai].
More precisely, a freely tagged2 partition of [a,b] is a partition {ai}k

i=0 of [a,b],
together with a sequence {xi}k

i=1 of real numbers (tags) such that xi ∈ [a,b] for each
i; it is not required that xi ∈ [ai−1,ai]. If δ is a gauge on [a,b], then a δ -fine freely
tagged partition is a freely tagged partition such that

[ai−1,ai]⊆ (xi − δ (xi),xi + δ (xi))

holds for each i. Thus the subintervals in a δ -fine freely tagged partition are required
to lie close to the corresponding tags, but are not required to contain the tags.

Note that every δ -fine tagged partition of [a,b] is a δ -fine freely tagged partition
of [a,b], but that the converse does not hold. Note also that the δ -fine tagged
partitions of [a,b] are exactly the δ -fine freely tagged partitions of [a,b] that are
in fact tagged partitions.

Riemann sums are defined for freely tagged partitions just as they are for tagged
partitions: if the freely tagged partition P has division points {ai}k

i=0 and tags
{xi}k

i=1, then for a function f : [a,b]→R we have R( f ,P) =∑k
i=1 f (xi)(ai−ai−1).

A function f : [a,b]→ R is McShane integrable on [a,b] if there is a number L
such that for every positive number ε there is a gauge δ on [a,b] such that

|R( f ,P)−L|< ε holds for every δ -fine freely tagged partition P of [a,b];

the number L is then called the McShane integral of f over [a,b]. We will denote
the McShane integral of f over the interval [a,b] by (M)

∫ b
a f or (M)

∫ b
a f (x)dx; in

cases where there does not seem to be a significant chance of confusion, we may
write simply

∫ b
a f or

∫ b
a f (x)dx.

Arguments that show that the Henstock–Kurzweil integral is well defined (see
Exercise 2) can also be used to show that the McShane integral is well defined.

2Another term for a freely tagged partition is a free tagged partition.



H The Henstock–Kurzweil and McShane Integrals 433

sequence of division points {ai} to specify the subintervals, since now there may be
gaps between the subintervals.

Let δ be a gauge on [a,b]. A tagged subpartition is said to be δ -fine, or
subordinate to δ , if [ci,di] ⊆ (xi − δ (xi),xi + δ (xi)) holds for each i. The Riemann
sum associated to a function f and tagged subpartition P is, of course, defined by
R( f ,P) = ∑i f (xi)(di − ci).

The following result gives some useful estimates involving Riemann sums over
subpartitions.

14. (Saks–Henstock lemma) Suppose that f : [a,b] → R is Henstock–Kurzweil
integrable, that ε is a positive number, and that δ is a gauge on [a,b] such that
every δ -fine tagged partition P of [a,b] satisfies |R( f ,P)− (H)

∫ b
a f | < ε .

Show that if P ′ is a δ -fine tagged subpartition of [a,b], with subintervals
{[ci,di]} and tags {xi}, then

∣
∣
∣
∣∑

i
f (xi)(di − ci)−∑

i
(H)

∫ di

ci

f

∣
∣
∣
∣≤ ε (1)

and

∑
i

∣
∣
∣ f (xi)(di − ci)− (H)

∫ di

ci

f
∣
∣
∣≤ 2ε. (2)

(Hint: Suppose that f , ε , δ , and P ′ are as specified above. Let {[g j,h j]} be
the closures of the maximal subintervals of [a,b] that are disjoint from all the
subintervals of P ′, and for each j choose a partition P j of [g j,h j] that is
subordinate to δ and moreover is such that R( f ,P j) is extremely close to
(H)

∫ h j
g j

f . To prove (1), consider the partition of [a,b] formed by combining

P ′ and all the P j. What happens when the partitions P j are made finer and
finer? In order to derive (2) from (1), look at two subpartitions, one where the
differences f (xi)(di − ci)− (H)

∫ di
ci

f are all positive, and one where they are all
negative.)

15. Suppose that f : [a,b] → R is Henstock–Kurzweil integrable and that
F : [a,b] → R is defined by F(x) =

∫ x
a f . Show that F is continuous. (Hint:

Use the Saks–Henstock lemma (Exercise 14) to show that given a positive ε
and an element x0 of [a,b], we have |F(x)−F(x0)− f (x0)(x− x0)| < ε for all
x sufficiently close to x0.)

16.(a) Suppose that f : [a,b) → R is Henstock–Kurzweil integrable on [a,c] for
each c in (a,b). Show that for each positive ε there is a positive function δ
on [a,b) such that for each c in (a,b) and each δ -fine partition P of [a,c]
we have |R( f ,P)− ∫ c

a f | < ε . (Hint: Let {an}∞
1 be a strictly increasing

sequence such that a1 = a and limn an = b. For each n choose a gauge
δn on [an,an+1] such that each δn-fine partition P of [an,an+1] satisfies
|R( f ,P)− ∫ an+1

an
f | < ε/2n. Form δ by combining the gauges δn, n = 1,

2, . . . , suitably. See Exercises 6, 7, and 14.)
(b) Show that if f : [a,b]→R is Henstock–Kurzweil integrable on [a,c] for each

c in (a,b) and if limc→b
∫ c

a f exists, then f is Henstock–Kurzweil integrable
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on [a,b] and
∫ b

a f = limc→b
∫ c

a f . Thus the improper Henstock–Kurzweil
integral is no more general than the Henstock–Kurzweil integral. (Hint: By
modifying f , if necessary, we can assume that f (b) = 0. Use the function δ
from part (a) of this exercise in your proof.)

17. (The monotone convergence theorem) This exercise is devoted to a proof of
the monotone convergence theorem for the Henstock–Kurzweil integral, which
can be stated as follows: Suppose that f and f1, f2, . . . are [−∞,+∞]-valued
functions on [a,b] that are finite almost everywhere and satisfy

f1(x)≤ f2(x)≤ . . . (3)

and
f (x) = lim

n
fn(x) (4)

at almost every x in [a,b]. If each fn is Henstock–Kurzweil integrable and
if the sequence {(H)

∫ b
a fn} is bounded above, then f is Henstock–Kurzweil

integrable and (H)
∫ b

a f = limn (H)
∫ b

a fn.

(a) Check that for proving the monotone convergence theorem it is enough to
consider the case where all the functions involved are [0,+∞)-valued and
relations (3) and (4) hold at every x in [a,b].

(b) Prove the monotone convergence theorem. (Hint: Let L be the limit of the
sequence {(H)

∫ b
a fn}. Here is a strategy for showing that f is integrable,

with integral L: Let ε be a positive number, and for each n let δn be a gauge
such that each δn-fine partition P satisfies |R( fn,P)− ∫ b

a fn|< ε/2n. For
each x in [a,b] let n(x) be the smallest of those positive integers n that satisfy∫

fn > L−ε and fn(x)> f (x)−ε . Use the δn’s to create a gauge δ by letting
δ (x) = δn(x)(x) for each x. Let P be a δ -fine partition, with division points
{ai} and tags {xi}. To bound |R( f ,P)−L|, let m and M be the smallest
and largest values of n(xi) as xi ranges over the set of tags of P , note that
∣
∣
∣
∣∑ f (xi)(ai − ai−1)−∑

∫ ai

ai−1

fn(xi)

∣
∣
∣
∣

≤
∣
∣
∣∑ f (xi)(ai − ai−1)−∑ fn(xi)(xi)(ai − ai−1)

∣
∣
∣

+

∣
∣
∣
∣∑ fn(xi)(xi)(ai − ai−1)−∑

∫ ai

ai−1

fn(xi)

∣
∣
∣
∣,

use the definition of δ and the Saks–Henstock lemma to verify that the right
side of the formula displayed above is at most (b− a)ε + ε , and then note
that ∑

∫ ai
ai−1

fn(xi) lies between
∫ b

a fm and
∫ b

a fM , both of which are close to L.)

18. The goal of this exercise is to prove that the Henstock–Kurzweil integral is an
extension of the Lebesgue integral—that is, that

f is Henstock–Kurzweil integrable and (H)

∫

f = (L)
∫

f (5)

holds for each Lebesgue integrable function f : [a,b]→ R.
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(a) Show that (5) holds if f is the characteristic function of a Borel subset of
[a,b]. (Hint: Use Theorem 1.6.2.)

(b) Show that (5) also holds if f is the characteristic function of a Lebesgue
measurable subset of [a,b].

(c) Show that (5) holds if f is a nonnegative Lebesgue integrable function on
[a,b]. (Hint: Use the monotone convergence theorems for the Lebesgue and
Henstock–Kurzweil integrals.)

(d) Finally, show that (5) holds if f is an arbitrary Lebesgue integrable function.

19. Suppose that f : [a,b] → R is Henstock–Kurzweil integrable, and let
F : [a,b] → R be its indefinite integral—that is, the function defined by
F(x) =

∫ x
a f for each x in [a,b]. Then F is differentiable, with derivative

given by F ′(x) = f (x), at almost every x in [a,b]. (Hint: Define D+ by

D+(x) = limsup
t→x+

F(t)−F(x)
t − x

.

Let α and ε be positive numbers, and use the Vitali covering theorem and
the Saks–Henstock lemma to show that if the set {x : D+(x) > f (x) +α} is
nonempty, then we can choose a sequence {[ai,bi]} of disjoint intervals that
cover it up to a Lebesgue null set and satisfy

ε > ∑
i
(F(bi)−F(ai)− f (ai)(bi − ai))> αλ ∗({x : D+(x)> f (x)+α}).

Conclude that D+ ≤ f almost everywhere. Prove analogous results for lower
limits and for limits from the left.)

20. Show that each Henstock–Kurzweil integrable function is Lebesgue measura-
ble. (Hint: Use Exercises 15 and 19.)

21. Is every Henstock–Kurzweil integrable function Borel measurable?
22.(a) Show that the converse to part (c) of Exercise 18 also holds. Thus a

nonnegative function is Henstock–Kurzweil integrable if and only if it
is Lebesgue integrable. (Hint: Why was this not included as a part of
Exercise 18, but delayed to this point?)

(b) Show that part (a) fails if the non-negativity condition is omitted. (Hint: Take
a function on [a,b] that has an improper Riemann integral but is not Lebesgue
integrable.)

23. (A version of Theorem 6.3.11 for the Henstock–Kurzweil integral) Suppose
that the function F : [a,b]→R is continuous on [a,b] and is differentiable at all
but a countable collection of points in [a,b]. Then its derivative F ′ is Henstock–
Kurzweil integrable on [a,b], and

(H)

∫ b

a
F ′(x)dx = F(b)−F(a).


