
SLICKROCK II

perspective

Value-Sensitive Design
Batya Friedman Colby College and The Mina Institute

After all, values—especially moral values—
can be controversial. They can also seemingly
conflict with economic goals and can be diffi-
cult to articulate clearly and to translate into
meaningful processes and designs. What then
is there to be said about accounting for
human values in system design? How should
we say it?

Over the past decade, my colleagues and I
have addressed these questions as we have
taken an active stance toward creating com-
puter technologies that—from an ethical posi-
tion—we can and want to live with [2, 4 – 7].
I have also sought to develop a framework for
understanding how specific values play out in
the design of computer systems, including
how these values can be undermined or pro-
moted by the technology. In this article, I dis-
cuss projects (conducted in collaboration with
Helen Nissenbaum) that concern two values:
user autonomy and freedom from bias. I con-
clude with some reflections on the importance
of value-sensitive design, justifiable limita-
tions on its implementation, and ways in
which it complements economic mandates.

User Autonomy1

Consider a recent workstation design that
comes from a leading computer hardware and
networking company in the United States (see
[20] for a detailed discussion). The worksta-
tion was designed to support speech input and
multimedia, and thus included a built-in
microphone. Nothing strange here. Except
that the microphone automatically recorded
audio information whenever the workstation
was on. Now, imagine that you are in the mid-
dle of a video-conferencing session and a visi-
tor comes into your office, or the phone rings.
The only way to ensure audio privacy is to
turn off the application, which is a cumber-
some solution. Alternatively, a simple solution
existed in the design process (ultimately
vetoed by the design team): to install a hard-
ware on/off switch on the microphone at the
cost of 25 cents.

This example illustrates how hardware
design can either hinder or help the user’s abil-
ity to control the technology. More generally,
it speaks to the value of user autonomy. By
this term we refer to individuals who are self-

17i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 1 9 9 6

1User autonomy was

the topic of a work-

shop Nissenbaum and

I organized at CHI‘96

[6]. Participants in the

workshop included

Bay-Wei Chang, Ise

Henin, David Kirsh,

Pekka Lehtio, Nicole

Parrot, and Mark

Rosenstein, They con-

tributed to the ideas

developed here.

Values emerge from the tools that we build and how we

choose to use them. Yet, in most of the current practice in

designing computer technology and the related infrastructure of

cyberspace, little is said about values.

18 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 1 9 9 6

Batya Friedman,

Department of

Mathematics and

Computer Science,

Colby College,

Waterville, ME 04901.

E-mail:

b_friedm@colby.edu.

determining, who are able to decide, plan, and
act in ways that they believe will help them to
achieve their goals and promote their values.
People value autonomy because it is funda-
mental to human flourishing and self-devel-
opment [8, 9].

How can designs promote user autonomy?
From the previous example, there might seem
to be a simple answer: If autonomous individ-
uals need to have freedom to choose means
and ends, then it could be said that whenever
possible and at all levels, designers should pro-
vide users the greatest possible control over
computing power. On closer scrutiny, howev-
er, there is a more complex picture. After all,
think of a text editor that helps a non-techni-
cally minded user to create consistent and
well-formatted documents. Such users will
have little interest in explicitly controlling
lower levels of operation of the editor even
though they will appreciate control over high-
er level functions. They will have little inter-
est, say, in controlling how the editor executes
a search and replace operation or embeds for-
matting commands in the document, and
more interest in controlling the efficient and
effective formatting of the document. In this
case, achieving the higher order desires and
goals, such as efficiently producing a good-
looking document, will enhance autonomy,
whereas excessive control over all levels of
operation of the editor may actually interfere
with user autonomy by obstructing users’ abil-
ity to achieve desired goals.

In other words, autonomy is protected
when users are given control over the right
things at the right time. Of course, the hard
work of design is to decide these whats and
whens. Accordingly, Nissenbaum and I have
begun to identify aspects of systems that can
promote or undermine user autonomy. The
four that I discuss here are system capability,
system complexity, misrepresentation of the
system, and system fluidity.

System Capability
Recall the introductory example of a worksta-
tion microphone with no hardware on/off
switch. Here (assuming no software fixes),
users lack the capability to easily interrupt a
videoconference for a private office conversa-

tion. Similarly, users sometimes need but are
denied access to low-level manipulations
from within an operating system. Or con-
sider a state-of-the-art 3-D rendering system
designed by a leading software company to
support artists with the animation process.
The system designers assumed users would
work from hand-drawn or computer-generat-
ed sketches. But when some users preferred to
work from video images, it was discovered
that there was no way to connect video input
to the system. All three cases illustrate that
user autonomy can be undermined when the
computer system does not provide the user
with the necessary technological capability to
realize his or her goals.

System Complexity
In some instances, systems may supply users
with the necessary capability to realize their
goals, but such realization becomes difficult
because of complexity. We can see this prob-
lem clearly with the recent proliferation of fea-
tures in many word processing programs.
Although more features mean more capability,
more features often increase a program’s com-
plexity and thereby decrease its usability, espe-
cially for the novice user. Granted, a designer
can rightfully expect users to spend time
learning. But the question is How much time?
Moreover, other problems of system complex-
ity arise from a mismatch between the abilities
of the user—for example skill level, memory,
attention span, computational ability, and
physical ability—and those required to use the
system efficiently.

Misrepresentation of the System
Users can experience a loss of autonomy when
provided with false or inaccurate information
about the computer system. Imagine, for
example, the package copy for a news filter
that states “this news filter is as good as the
best personal assistant.” Given the state of the
field, such hyperbole will mislead a user who
believes the package copy and, thus, develops
inaccurate expectations of the software agent’s
ability to realize the user’s goals. Or consider
the following vignette related by a colleague in
her remarks in a panel at CHI 95. My col-
league had recently visited a MOO—one that

Value-Sensitive

D E S I G N

19i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 1 9 9 6

users visit with the mutually understood goal
of meeting and interacting with others. While
there, she “walked” into a bar and started to
chat with the bartender. Several minutes into
the conversation, she had a realization: the
bartender was a bot—not a person taking part
in on-line conversation! So much for thinking
she had met a person she might like to know
better. There is also the loss of time, the feel-
ing of deception, and the residual doubt “will
the next encounter seemingly with a person
actually be with someone’s code?” Such expe-
riences can undermine the quality of interac-
tions in an electronic community and
ultimately affect the user’s original goals for
participation.

System Fluidity
With the proliferation of electronic informa-
tion, automated filters—such as mail agents
and news filtering software—have become
increasingly common. Now, let’s assume that

initially a filter does a good job of discarding
or never even retrieving unwanted informa-
tion. Over time, however, the user’s goals can
change. A single woman, for example, might
have little interest in company e-mail on
maternity leave and child care, but 3 years
later and expecting a baby, the same messages
might be wanted. But because the filter does
not provide the woman with information
about what was previously discarded, she has
no way of assessing what she is currently miss-
ing. Indeed, she would have no hint that the
mail agent even needs to be reprogrammed or
retrained. The point here is that users’ goals
often change over time. Thus to support user
autonomy, systems need to take such change
into account and provide ready mechanisms
for users to review and fine-tune their systems
[11, 12].

Bias in Computer Systems2

In its most general sense, “bias” means simply
“slant.” Given this undifferentiated usage, bias
can describe both moral and nonmoral cir-
cumstances. In our work, however,
Nissenbaum and I have been focusing on
computer technologies with biases as a source
of moral concern; thus, we use the term bias
in a more restricted sense. We say that a com-
puter technology is biased if it systematically
and unfairly discriminates against certain
individuals or groups of individuals in favor of
others. A technology discriminates unfairly if
it denies an opportunity or a good, or if it
assigns an undesirable outcome to an individ-
ual or group of individuals on grounds that
are unreasonable or inappropriate.

How then does bias become embedded in
computer systems? In our study of 17 existing
systems, we have identified three overarching
ways: preexisting bias, technical bias, and
emergent bias.

Preexisting Bias
Preexisting bias has its roots in social institu-
tions, practices, and attitudes. When comput-
er technologies embody biases that exist
independently of, and usually before, the cre-
ation of the technology, we say that the tech-
nology embodies preexisting bias. Preexisting
biases may originate in society at large, in sub-
cultures, or in formal or informal organiza-
tions and institutions. They can also reflect
the personal biases of individuals who have
significant input into the design of the tech-
nology, such as the client or the system design-
er. This type of bias can enter a technology
either through the explicit and conscious
efforts of individuals or institutions, or
implicitly and unconsciously, even despite the
best of intentions. Consider, for example, soft-
ware that a colleague purchased for his school-

2Much of the material

discussed here has

been adapted from

several sources [3, 5].

perspective

Several minutes into the conversation, she had a
realization: the bartender was a bot—not a person taking
part in on-line conversation

20 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 1 9 9 6

age daughter. He writes, “Well, of course, the
first thing that happens is this: you get to
choose which one of three basic adventurers
you want to be—a male thief, a male magi-
cian, or a male warrior. Nice choice for a
young girl, huh?” [3], p. 49]

More formally, Huff & Cooper [10] con-
ducted a study showing that software design-
ers sometimes unknowingly design software
that is more aligned with males than with
females. In the study, subjects were asked to
propose designs for software to teach seventh
graders the correct use of commas. One group
of subjects was asked to design the software
for seventh-grade boys, the second group to
design for seventh-grade girls, and the third
group to design for seventh-graders, gender
unspecified. Huff and Cooper reported that
along a number of dimensions the designs
proposed by subjects in the gender-unspeci-
fied group closely resembled the designs pro-
posed by subjects who designed for boys and
were significantly different from the designs
proposed by subjects who designed for girls.
The study illustrates how preexisting biases, in
the form of expectations about which software
will appeal to each gender, coupled with the
implicit assumption that the generic user of
software is likely to be male, can influence
design and give rise to bias in software.

Whereas gender bias is deeply embedded in
Western society, other biases can serve indi-
vidual or corporate interests. The Sabre and
Apollo computerized airline reservation sys-
tems that have been charged with intentional
bias [17] are one example. The limited size of
display screens often means that all possible
flights that match a traveler’s request cannot
be shown simultaneously on the screen. The
flights that are shown on the initial screen (or
the part of the file that is visible before the
user scrolls) are more likely to be selected by
travel agents and their clients [19]. In the
Sabre and Apollo systems, because of details
in the algorithm certain airlines regularly
appear on the first screen and thus have sys-
tematic advantages over those airlines whose
flights do not.

Technical Bias
In contrast to preexisting bias, technical bias

arises from the resolution of issues in the tech-
nical design. Sources of technical bias can be
found in several aspects of the design process,
including

• Limitations of computer tools such as
hardware, software, and peripherals;

• The process of ascribing social meaning
to algorithms developed out of context;

• Imperfections in pseudo-random num-
ber generation; and

• The attempt to make human constructs
amenable to computers—when, for
example, we quantify the qualitative,
make discrete the continuous, or formal-
ize the nonformal.

The use of computer punch card tallying
systems for national and local elections pro-
vides a case in point. Undereducated groups
are more likely to not understand how the
computerized system works and, thereby, to
invalidate their own votes by either not voting
for a position, or by voting for more than one
person per position [1]. When this occurs, fea-
tures of the interface create unfair difficulties
for undereducated voters and thus pose serious
problems for fair elections (see also [16]).

Graphical user interfaces (GUIs) provide
another example of technical bias. Before the
invention of GUIs, many visually impaired
individuals were active members of the com-
puting community and many supported
themselves as computer professionals. GUIs
then appeared and rapidly became a standard.
Key to our discussion, the development of
GUIs was motivated not by preexisting social
bias against visually impaired computer users,
but rather by new technical developments in
graphics-oriented hardware and displays cou-
pled with the belief in the old adage “a picture
is worth a thousand words.” Although the
new GUI standard improves access to the
technology for many, it has effectively shut
out visually impaired computer users. On a
more positive note, to counter this technical
bias the computer industry has invested sub-
stantially in attempting to design technical
means that would allow visually impaired
users access to the information buried in the
graphical user interface.

Value-Sensitive

D E S I G N

21i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 1 9 9 6

Emergent Bias
Although it is almost always possible to iden-
tify preexisting bias and technical bias in a
design at the time of creation or implementa-
tion, emergent bias arises only in a context of
use by real users. This bias typically emerges
some time after a design is completed, as a
result of a change in societal knowledge, user
population, or cultural values. For example,
much of the educational software developed
in the United States embeds learning activities
in a game environment that rewards competi-
tive and individual playing strategies. When
such software is used by students with a cul-
tural background that eschews competition
and instead promotes cooperative endeavors,
such students can be placed at a disadvantage
in the learning process. Or consider the

National Resident Match Program (NRMP),
a computerized matching system for assigning
medical residents to hospital residency pro-
grams, that was designed and implemented in
the 1950s. The initial algorithm used by the
NRMP placed couples (where both members
of the couple were residents seeking a match)
at a disadvantage in the matching process
compared with their single peers. However,
this bias emerged only in the late 1970s and
early 1980s when increasing numbers of
women entered medical school and a growing
number of couples sought residencies [14,
15]. To the credit of those who oversee the
NRMP, recent revisions in the algorithm place
couples more equitably in matches.

Design Methods to Minimize Bias
As the computing community develops a bet-
ter understanding of bias in system design, we
can correspondingly develop techniques to
avoid or minimize it. Certainly an initial step

involves identifying or “diagnosing” bias, and
to do so during the earliest stages of the design
phase, when negotiating the system’s specifica-
tions with the client and constructing the first
prototypes. Then comes the task of remedy-
ing. Some current designers, for instance,
address the problem of handedness by allow-
ing the user to toggle between a right-handed
or a left-handed configuration for user input
and screen display. Elsewhere, members of the
Archimedes Project at Stanford University are
developing an approach to designing for peo-
ple with physical disabilities [13]. More
broadly, the HCI community has considerable
experience in designing usable systems for
both color-blind and color-sighted individuals
by the simple means of redundant informa-
tion: Whatever pertinent information is

communicated through color is also commu-
nicated in some other form. The more success
we have with specific designs, the more readi-
ly we can develop more systematic approaches
to both process and technique. For example,
in their attempt to systematize attention to
bias in design, NYNEX has begun to embed
methods for minimizing bias into their certi-
fied design processes for ISO 9001 registra-
tion [21]. Eventually, the standards themselves
should require such value-sensitive processes.

Conclusion
Although computer technology is expensive to
develop, it is comparatively inexpensive to
produce and disseminate, and thus the values
embedded in any given implementation are
likely to be widespread, pervasive, and system-
atic. Moreover, unlike with people with whom
we can disagree about values, we cannot easily
negotiate with the technology. Although inat-
tention to moral values in any enterprise is

perspective

Well, of course, the first thing that happens is this:
you get to choose which one of three basic adventurers you
want to be—a male thief, a male magician, or a male
warrior. Nice choice for a young girl, huh?

22 i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 1 9 9 6

disturbing, it is particularly so in the design of
computer technology. Thus, I have suggested
that in the design of computer technology we
value human values as understood from an
ethical standpoint.

This is not to say that one or more such
values, such as autonomy or freedom from
bias, necessarily overrides others. For example,
when systems are employed in contexts that
seriously affect human welfare, such as in an
air traffic control system, we may need to
restrict autonomy to protect against a user
with malicious intentions or well-intentioned
users guided by poor judgment. Neither is it
always clear how to balance competing values.
Take, for example, the issue of standardization
in design. On the one hand, some forms of
standardization will restrict how users can
control technology. On the other hand, stan-
dardization can free users from the burden of
relearning how to work with the technology
when they switch among stations or systems.
In these situations, standardization provides
users with not lesser but greater control over
the technology.

Certainly, more thinking is needed on how
to balance human values. For example, it may
be that reconciling the ideals of standardiza-
tion and autonomy depends on identifying
the appropriate level of user control. It will
also be necessary to consider the relationships
between moral values and economic goals.
Part of the difficulty here is that economic
goals are themselves human values, and at
times even moral ones, as when people strive
through economic means to attain autonomy,
that is, the freedom and responsibility to
attain necessary goods for themselves and
their families. But personal and corporate eco-
nomic goals also have a long history of under-
mining moral values: when, for example, a
drive for profits runs roughshod over the
development of safe products and the fair
treatment of workers and customers. In such
cases, it should go without saying that the eco-
nomic needs to give way to the moral.

Moral values can also support economic
goals. Yet this point often gets lost in bottom-
line cost–benefit analyses. For example, pro-
tecting user autonomy means giving users
control at the appropriate level over their

machines. This protection can translate into
marketable features, such as of privacy and
security. Minimizing bias in a design also like-
ly leads to a larger market share because such
systems are typically accessible to a greater
diversity of users (e.g., users who are color-
sighted or color-blind, right-handed or left-
handed, male or female). Moreover, even
when a greater market share is not directly
anticipated there is the goodwill of customers
who associate a company or its product with
moral purposes. Such an association is diffi-
cult to quantify economically, no doubt; but
so too are the economic benefits of advertis-
ing. It is also worth noting that retrofitting a
design is vastly more costly than building
things right the first time.

Which brings us to what it means to build
things “right.” Right by what criteria? Some
currently accepted ones in system design
include reliability, efficiency, and correctness.
Yet there is a growing consensus that we need
also to include criteria that embody or at least
help foster core human values [18, 21]. Thus,
in future work we need to continue to con-
ceptualize values carefully and then study
them in both laboratory settings and organi-
zations. Moreover, we will need to examine
our own design practices from this perspec-
tive. By such means, designs could be judged
poor and designers negligent. As with the tra-
ditional criteria of reliability, efficiency, and
correctness, we do not require perfection in
value-sensitive design, but a commitment.
And progress.

About the Author
Batya Friedman is Associate Professor of
Computer Science at Colby College. She
received both her B.A. and her Ph.D. from the
University of California at Berkeley. Her areas
of specialization are human-computer interac-
tion and the human relationship to technolo-
gy. She has written numerous research articles
in addition to designing educational software
and consulting on human values in system
design. Currently she is editing a book titles
Human Values and the Design of Computer
Technology to be published shortly by the
Center for the Study of Language and
Information, Stanford University.

Value-Sensitive

D E S I G N

23i n t e r a c t i o n s . . . n o v e m b e r + d e c e m b e r 1 9 9 6

1. Dagger, R. . Annals of

democracy. The New

Yorker (November 7,

1988): 40–46, 51–52,

54, 56, 61–68, 97–100,

102–108.

2. Friedman, B. (ed.).

Human values and the

design of computer tech-

nology. Center for the

Study of Language and

Information, Stanford

University, Stanford,

Calif., in press.

3. Friedman, B., Brok,

E., Roth, S. K., and

Thomas, J. Minimizing

bias in computer sys-

tems: CHI ‘95

Workshop. SIGCHI

Bulletin 28, 1 (1996):

48–51.

4. Friedman, B. and

Kahn, P. H., Jr. Human

agency and responsible

computing: Implications

for computer system

design. Journal of

Systems Software 17

(1992): 7–14.

5. Friedman, B. and

Nissenbaum, H. Bias in

computer systems. ACM

Transactions on

Information Systems 14,

3 (1996): 1–18.

6. Friedman, B. and

Nissenbaum, H. User

autonomy: Who should

control what and when?

Conference Companion

of the Conference on

Human Factors in

Computing Systems,

CHI ‘96 Association for

Computing Machinery,

New York, April 1996, p.

433.

7. Friedman, B. and

Winograd, T. (eds.).

Computing and social

responsibility: A collec-

tion of course syllabi.

Computer Professionals

for Social Responsibility,

Palo Alto, Calif., 1990.

8. Gewirth, A. Reason

and morality. University

of Chicago Press,

Chicago, 1978.

9. Hill, T. E., Jr.

Autonomy and self-

respect. Cambridge

University Press, United

Kingdom, 1991.

10. Huff, C. and Cooper,

J. Sex bias in educational

software: The effect of

designers’ stereotypes on

the software they design.

Journal of Applied Social

Psychology 17 (1987):

519–532.

11. Laurel, B. Interface

agents: Metaphors with

character. In B. Laurel

(ed.), The art of human-

computer interface

design Addison-Wesley,

Reading, Mass., 1990,

pp. 355–365.

12. Malone, T. W., Lai,

K. Y., and Fry, C.

Experiments with Oval:

A radically tailorable tool

for cooperative work.

Proceedings of the ACM

Conference on

Computer Supported

Cooperative Work

(CSCW ‘92), Toronto,

Ontario, November

1992.

13. Perry, J., Macken, E.,

Scott, N., and McKinley.

Disability, inability and

cyberspace. In B.

Friedman (ed.), Human

values and the design of

computer technology.

Center for the Study of

Language and

Information, Stanford

University, Stanford,

Calif., in press.

14. Roth, A. E. The evo-

lution of the labor mar-

ket for medical interns

and residents: A case

study in game theory.

Journal of Political

Economy 92 (1984):

991–1016.

15. Roth, A. E. New

physicians: A natural

experiment in market

organization. Science

250 (1990): 1524–1528.

16. Roth, S. K. The

unconsidered ballot:

How design effects vot-

ing behavior. Visible

Language 28 (1994):

48–67.

17. Shifrin, C. A. Justice

will weigh suit challeng-

ing airlines’ computer

reservations. Aviation

Week & Space

Technology (March

1985), p. 105.

18. Shneiderman, B. and

Rose, A. Social impact

statements: Engaging

public participation in

information technology

design. In B. Friedman

(ed.), Human values and

the design of computer

technology. Center for

the Study of Language

and Information,

Stanford University,

Stanford, Calif., in press.

19. Taib, I. M. Loophole

allows bias in displays on

computer reservations

systems. Aviation Week

& Space Technology

(February 1990), p. 137.

20. Tang, J. C.

Eliminating a hardware

switch: Weighing eco-

nomics and values in a

design decision. In B.

Friedman (ed.), Human

values and the design of

computer technology.

Center for the Study of

Language and

Information, Stanford

University, Stanford,

Calif., in press.

21. Thomas, J. C. Steps

toward universal access

within a communications

company. In B. Friedman

(ed.), Human values and

the design of computer

technology. Center for

the Study of Language

and Information,

Stanford University,

Stanford, Calif., in press.

perspective
References

