Andrej Karpathy Video

Code

Pulling the dataset we will be working on:

  curl https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt -o input.txt

Reading it into python

  with open('input.txt', 'r', encoding='utf-8') as f:
    text = f.read()

Data inspection

print("length of dataset in characters: ", len(text))
print("length of data: ", len(data))
length of dataset in characters:  1115394
length of data:  1115394
  print(text[:1000])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

All:
Resolved. resolved.

First Citizen:
First, you know Caius Marcius is chief enemy to the people.

All:
We know't, we know't.

First Citizen:
Let us kill him, and we'll have corn at our own price.
Is't a verdict?

All:
No more talking on't; let it be done: away, away!

Second Citizen:
One word, good citizens.

First Citizen:
We are accounted poor citizens, the patricians good.
What authority surfeits on would relieve us: if they
would yield us but the superfluity, while it were
wholesome, we might guess they relieved us humanely;
but they think we are too dear: the leanness that
afflicts us, the object of our misery, is as an
inventory to particularise their abundance; our
sufferance is a gain to them Let us revenge this with
our pikes, ere we become rakes: for the gods know I
speak this in hunger for bread, not in thirst for revenge.
  chars = sorted(list(set(text)))
  vocab_size = len(chars)
  print(''.join(chars))
  print(vocab_size)

 !$&',-.3:;?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
65

Tokeniser

  stoi = { ch:i for i,ch in enumerate(chars) }
  itos = { i:ch for i,ch in enumerate(chars) }
  encode = lambda s: [stoi[c] for c in s]
  # defines function taking in string, outputs list of ints
  decode = lambda l: ''.join([itos[i] for i in l])
  # input: list of integers, outputs string

  print(encode("hello world"))
  print(decode(encode("hello world")))
[46, 43, 50, 50, 53, 1, 61, 53, 56, 50, 42]
hello world
  import torch
  data = torch.tensor(encode(text), dtype=torch.long)
  print(data.shape, data.dtype)
  print(data[:1000])
torch.Size([1115394]) torch.int64
tensor([18, 47, 56, 57, 58,  1, 15, 47, 58, 47, 64, 43, 52, 10,  0, 14, 43, 44,
        53, 56, 43,  1, 61, 43,  1, 54, 56, 53, 41, 43, 43, 42,  1, 39, 52, 63,
         1, 44, 59, 56, 58, 46, 43, 56,  6,  1, 46, 43, 39, 56,  1, 51, 43,  1,
        57, 54, 43, 39, 49,  8,  0,  0, 13, 50, 50, 10,  0, 31, 54, 43, 39, 49,
         6,  1, 57, 54, 43, 39, 49,  8,  0,  0, 18, 47, 56, 57, 58,  1, 15, 47,
        58, 47, 64, 43, 52, 10,  0, 37, 53, 59,  1, 39, 56, 43,  1, 39, 50, 50,
         1, 56, 43, 57, 53, 50, 60, 43, 42,  1, 56, 39, 58, 46, 43, 56,  1, 58,
        53,  1, 42, 47, 43,  1, 58, 46, 39, 52,  1, 58, 53,  1, 44, 39, 51, 47,
        57, 46, 12,  0,  0, 13, 50, 50, 10,  0, 30, 43, 57, 53, 50, 60, 43, 42,
         8,  1, 56, 43, 57, 53, 50, 60, 43, 42,  8,  0,  0, 18, 47, 56, 57, 58,
         1, 15, 47, 58, 47, 64, 43, 52, 10,  0, 18, 47, 56, 57, 58,  6,  1, 63,
        53, 59,  1, 49, 52, 53, 61,  1, 15, 39, 47, 59, 57,  1, 25, 39, 56, 41,
        47, 59, 57,  1, 47, 57,  1, 41, 46, 47, 43, 44,  1, 43, 52, 43, 51, 63,
         1, 58, 53,  1, 58, 46, 43,  1, 54, 43, 53, 54, 50, 43,  8,  0,  0, 13,
        50, 50, 10,  0, 35, 43,  1, 49, 52, 53, 61,  5, 58,  6,  1, 61, 43,  1,
        49, 52, 53, 61,  5, 58,  8,  0,  0, 18, 47, 56, 57, 58,  1, 15, 47, 58,
        47, 64, 43, 52, 10,  0, 24, 43, 58,  1, 59, 57,  1, 49, 47, 50, 50,  1,
        46, 47, 51,  6,  1, 39, 52, 42,  1, 61, 43,  5, 50, 50,  1, 46, 39, 60,
        43,  1, 41, 53, 56, 52,  1, 39, 58,  1, 53, 59, 56,  1, 53, 61, 52,  1,
        54, 56, 47, 41, 43,  8,  0, 21, 57,  5, 58,  1, 39,  1, 60, 43, 56, 42,
        47, 41, 58, 12,  0,  0, 13, 50, 50, 10,  0, 26, 53,  1, 51, 53, 56, 43,
         1, 58, 39, 50, 49, 47, 52, 45,  1, 53, 52,  5, 58, 11,  1, 50, 43, 58,
         1, 47, 58,  1, 40, 43,  1, 42, 53, 52, 43, 10,  1, 39, 61, 39, 63,  6,
         1, 39, 61, 39, 63,  2,  0,  0, 31, 43, 41, 53, 52, 42,  1, 15, 47, 58,
        47, 64, 43, 52, 10,  0, 27, 52, 43,  1, 61, 53, 56, 42,  6,  1, 45, 53,
        53, 42,  1, 41, 47, 58, 47, 64, 43, 52, 57,  8,  0,  0, 18, 47, 56, 57,
        58,  1, 15, 47, 58, 47, 64, 43, 52, 10,  0, 35, 43,  1, 39, 56, 43,  1,
        39, 41, 41, 53, 59, 52, 58, 43, 42,  1, 54, 53, 53, 56,  1, 41, 47, 58,
        47, 64, 43, 52, 57,  6,  1, 58, 46, 43,  1, 54, 39, 58, 56, 47, 41, 47,
        39, 52, 57,  1, 45, 53, 53, 42,  8,  0, 35, 46, 39, 58,  1, 39, 59, 58,
        46, 53, 56, 47, 58, 63,  1, 57, 59, 56, 44, 43, 47, 58, 57,  1, 53, 52,
         1, 61, 53, 59, 50, 42,  1, 56, 43, 50, 47, 43, 60, 43,  1, 59, 57, 10,
         1, 47, 44,  1, 58, 46, 43, 63,  0, 61, 53, 59, 50, 42,  1, 63, 47, 43,
        50, 42,  1, 59, 57,  1, 40, 59, 58,  1, 58, 46, 43,  1, 57, 59, 54, 43,
        56, 44, 50, 59, 47, 58, 63,  6,  1, 61, 46, 47, 50, 43,  1, 47, 58,  1,
        61, 43, 56, 43,  0, 61, 46, 53, 50, 43, 57, 53, 51, 43,  6,  1, 61, 43,
         1, 51, 47, 45, 46, 58,  1, 45, 59, 43, 57, 57,  1, 58, 46, 43, 63,  1,
        56, 43, 50, 47, 43, 60, 43, 42,  1, 59, 57,  1, 46, 59, 51, 39, 52, 43,
        50, 63, 11,  0, 40, 59, 58,  1, 58, 46, 43, 63,  1, 58, 46, 47, 52, 49,
         1, 61, 43,  1, 39, 56, 43,  1, 58, 53, 53,  1, 42, 43, 39, 56, 10,  1,
        58, 46, 43,  1, 50, 43, 39, 52, 52, 43, 57, 57,  1, 58, 46, 39, 58,  0,
        39, 44, 44, 50, 47, 41, 58, 57,  1, 59, 57,  6,  1, 58, 46, 43,  1, 53,
        40, 48, 43, 41, 58,  1, 53, 44,  1, 53, 59, 56,  1, 51, 47, 57, 43, 56,
        63,  6,  1, 47, 57,  1, 39, 57,  1, 39, 52,  0, 47, 52, 60, 43, 52, 58,
        53, 56, 63,  1, 58, 53,  1, 54, 39, 56, 58, 47, 41, 59, 50, 39, 56, 47,
        57, 43,  1, 58, 46, 43, 47, 56,  1, 39, 40, 59, 52, 42, 39, 52, 41, 43,
        11,  1, 53, 59, 56,  0, 57, 59, 44, 44, 43, 56, 39, 52, 41, 43,  1, 47,
        57,  1, 39,  1, 45, 39, 47, 52,  1, 58, 53,  1, 58, 46, 43, 51,  1, 24,
        43, 58,  1, 59, 57,  1, 56, 43, 60, 43, 52, 45, 43,  1, 58, 46, 47, 57,
         1, 61, 47, 58, 46,  0, 53, 59, 56,  1, 54, 47, 49, 43, 57,  6,  1, 43,
        56, 43,  1, 61, 43,  1, 40, 43, 41, 53, 51, 43,  1, 56, 39, 49, 43, 57,
        10,  1, 44, 53, 56,  1, 58, 46, 43,  1, 45, 53, 42, 57,  1, 49, 52, 53,
        61,  1, 21,  0, 57, 54, 43, 39, 49,  1, 58, 46, 47, 57,  1, 47, 52,  1,
        46, 59, 52, 45, 43, 56,  1, 44, 53, 56,  1, 40, 56, 43, 39, 42,  6,  1,
        52, 53, 58,  1, 47, 52,  1, 58, 46, 47, 56, 57, 58,  1, 44, 53, 56,  1,
        56, 43, 60, 43, 52, 45, 43,  8,  0,  0])
  n = int(0.9*len(data))
  train_data = data[:n]
  val_data = data[n:]

Understanding the context influence of n+1th token

  block_size = 8
  print(train_data[:block_size])
  x = train_data[:block_size]
  y = train_data[1:block_size+1]
  for t in range(block_size):
      context = x[:t+1]
      target = y[t]
      print(f"at input {context}\n" +
	    f"target {target}")
tensor([18, 47, 56, 57, 58,  1, 15, 47])
at input tensor([18])
target 47
at input tensor([18, 47])
target 56
at input tensor([18, 47, 56])
target 57
at input tensor([18, 47, 56, 57])
target 58
at input tensor([18, 47, 56, 57, 58])
target 1
at input tensor([18, 47, 56, 57, 58,  1])
target 15
at input tensor([18, 47, 56, 57, 58,  1, 15])
target 47
at input tensor([18, 47, 56, 57, 58,  1, 15, 47])
target 58

Note that within the block_size of 8, there are 8 total examples.

Read more >