Regularisation

chapter 5: why are deep neural networks hard to train?

  • given the findings of the previous chapter (universality), why would we concern ourselves with learning deep neural nets?
    • especially given that we are guaranteed to be able to approximate any function with just a single layer of hidden neurons?

well, just because something is possible, it doesn’t mean it’s a good idea!

considering that we are using computers, it’s usually a good idea to break the problem down into smaller sub-problems, solve those, and then come back to solve the main problem.

Read more >

chapter 6: deep learning

{{< tikz >}}

\begin{tikzpicture}[x=1.6cm,y=1.1cm] \large \message{^^JDeep convolution neural network}

% Define colors \colorlet{myred}{red!80!black} \colorlet{myblue}{blue!80!black} \colorlet{mygreen}{green!60!black} \colorlet{myorange}{orange!70!red!60!black} \colorlet{mydarkred}{red!30!black} \colorlet{mydarkblue}{blue!40!black} \colorlet{mydarkgreen}{green!30!black}

% Define TikZ styles \tikzset{ >=latex, % for default LaTeX arrow head node/.style={thick,circle,draw=myblue,minimum size=22,inner sep=0.5,outer sep=0.6}, node in/.style={node,green!20!black,draw=mygreen!30!black,fill=mygreen!25}, node hidden/.style={node,blue!20!black,draw=myblue!30!black,fill=myblue!20}, node convol/.style={node,orange!20!black,draw=myorange!30!black,fill=myorange!20}, node out/.style={node,red!20!black,draw=myred!30!black,fill=myred!20}, connect/.style={thick,mydarkblue}, %,line cap=round connect arrow/.style={-{Latex[length=4,width=3.5]},thick,mydarkblue,shorten <=0.5,shorten >=1} }

% Define layers and nodes \def\layerNodes{{5,5,4,3,2,4,4,3}} % Number of nodes in each layer \def\NC{6} % number of convolutional layers \def\totalLayers{8} % total number of layers

Read more >