Intro
The focus here is on EDA (Exploratory Data Analysis) and investigating the best choice for the \(\lambda\) hyperparameter for LASSO and Ridge Regression.
We will be working on the Life Expectancy CSV data obtained from WHO.
Peeking at Data
We begin by viewing the columns of the Life Expectancy Dataframe:
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt
pd.options.display.float_format = '{:.2f}'.format
le_df = pd.read_csv("life_expectancy.csv")
le_df.columns
Index(['Country', 'Year', 'Status', 'Life expectancy ', 'Adult Mortality', 'infant deaths', 'Alcohol', 'percentage expenditure', 'Hepatitis B', 'Measles ', ' BMI ', 'under-five deaths ', 'Polio', 'Total expenditure', 'Diphtheria ', ' HIV/AIDS', 'GDP', 'Population', ' thinness 1-19 years', ' thinness 5-9 years', 'Income composition of resources', 'Schooling'], dtype='object')
We can then view the range of our life expectancy values with a box plot: