Frisbee Rules
double x, y;
double latitude, longitude;
int day, month, year;
Let \(A_1 = \begin{bmatrix} 1 & x_1 & y_1 \\ 0 & 1 & z_1 \\ 0 & 0 & 1 \end{bmatrix}\) and \(A_2 = \begin{bmatrix} 1 & x_2 & y_2 \\ 0 & 1 & z_2 \\ 0 & 0 & 1 \end{bmatrix}\in \mathcal{G}\).
Then \(A_1 A_2 =\begin{bmatrix} 1 & x_1+x_2 & y_1+x_1z_2+y_2 \\ 0 & 1 & z_1+z_2 \\ 0 & 0 & 1 \end{bmatrix}\in\mathcal{G}\), so we have closure.
Associativity follows from the associativity of standard matrix multiplication.
Letting \(x=y=z=0\), observe that the identity is in \(\mathcal{G}\).
Finally, if we take \(x_2 = -x_1\), \(z_2 = -z_1\), and \(y_2 = -y_1-x_1z_2\), then observe that \(A_1A_2 = I_3\), and thus inverses are of the required form! Therefore, $\mathcal{G} $ is a group.
The group is not abelian, e.g. take \(x_1=z_2=1\) and everything else to be \(0\). Then multiplying these matrices in the other order (i.e. \(x_2=z_1=1\)) gives a different answer.
double x, y;
double latitude, longitude;
int day, month, year;
Backlinks
1. Wiki /wiki/